Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From Low-Power to Power Electronics – Leistungszentrum Elektroniksysteme at SEMICON Europa 2015

01.10.2015

Leistungszentrum Elektroniksysteme (LZE) presents its latest R&D results on modern DC microgrids, inductive energy and data transfer, wearables for fitness applications, and energy-independent asset tracking for logistics at SEMICON Europa 2015 from October 6 to 8 in Dresden. LZE, which is located in the Nuremberg Metropolitan Region in Bavaria, offers a unique environment for high-class research on electronic systems.

Leistungszentrum Elektroniksysteme (LZE) is a joint initiative of the Fraunhofer-Gesellschaft, its two Institutes Fraunhofer IIS and Fraunhofer IISB, and Friedrich-Alexander University Erlangen-Nürnberg (FAU), in addition to other non-university research institutes and various industry partners such as Siemens. It grew out of many years of intense cooperation between the two Fraunhofer Institutes in Erlangen and FAU. There is a unique concentration of electronic systems research activities and industries based in the Nuremberg-Erlangen region. Research excellence and joint planning have created the foundation for a comprehensive, long-term strategic partnership between Fraunhofer, FAU and the electronics industry.


Within LZE, intelligent DC microgrids are integrated with lithium-ion systems for short-term storage of electrical energy, and with LOHC-based chemical systems for seasonal storage.

Kurt Fuchs / Fraunhofer

The research work of LZE addresses the development of complex electronic systems through a novel engineering platform that serves as a methods-based framework for generating, distributing, and applying research results. This includes broad competencies in power electronics, ICT, sensor technology, semiconductors, energy management, and materials science. LZE focusses on two major areas of technology: power electronic systems for, e.g., energy supply and mobility, and low-power electronics for sports and health applications (“wearables”), Industry 4.0, and the Internet of Things. The partners not only build and continually develop the working relationship through processes such as joint roadmapping, they also jointly create new cooperation models. LZE structures its research activities to ensure that the results lead to the development of successful and innovative products for the industry partners.

The research partners of LZE form an outstanding concentration of expertise: FAU comprises a Faculty of Engineering with 10.000 students. In addition, as FAU covers the entire spectrum of academic disciplines, there are large competencies in topics that accompany the development of electronic systems, such as economics or social aspects. With about 1.000 engineers in two Fraunhofer Institutes, Erlangen is the strongest Fraunhofer location for electronic systems. This is supplemented by the research labs of other non-university institutes and leading industrial companies in the region.

LZE launched its 30-month pilot phase in January 2015, including four pilot projects which address industry-relevant topics from power electronics to low-power electronics and demonstrate the wide spectrum and great capability of the LZE consortium. The latest R&D results of the pilot projects are presented at SEMICON Europa.

DC backbone with power-to-gas coupling

The rising share of renewable and decentralized energy production is putting new strains on today's electricity distribution systems, a problem that manifests itself in local oversupplies and undersupplies of energy, in addition to heavy fluctuations. The combination of new intelligent grid structures and electrochemical energy storage creates an opportunity to absorb this effect in local microgrids and thus take the load off the mains. The LZE project combines intelligent DC microgrids in buildings with an optimized combination of electrical and chemical energy storages. This comprises highly efficient lithium-ion battery storages for compensation of short-term fluctuations but also storages based on liquid organic hydrogen carriers (LOHC) for large-scale and long-term, seasonal storage. The size of the LOHC tank, which can be easily expanded, defines the storage capacity. At LZE, a prototype setup is being implemented with a 1 MWh LOHC storage in a shipping container, aiming at 30 kW charge/discharge power and a self-discharge of less than 1% per month.

Wireless power and data transfer in systems with fast-moving parts

Many applications require transferring power and data in moving systems. Examples include highly-automated autonomous production systems such as those envisioned for Industry 4.0 and robotic systems in which power and information have to be transmitted to the joints. In most cases, this requires the use of slip rings or flexible cables that are subject to wear and tear. The wireless technology is demonstrated at the example of a standard ball bearing with an inner and outer diameter of 20 mm and 52 mm, respectively. Despite the reduced axial installation space of 7 mm, a power of 20 W can be transferred to the rotating part due to high switching frequencies up to 1 MHz. The integrated bidirectional data transmission features a speed of 400 kBit/s for drive controls or sensors, which will be increased throughout the project.

Low-power electronics in sports and fitness applications

The project combines the Fraunhofer Technologies FitnessSHIRT and RedFIR to gather vital and position data from athletes during physical activity. The FitnessSHIRT is equipped with two textile electrodes to derive a single channel ECG together with a respiratory band to derive the respiratory rate. These vital data are pre-processed on an ARM processor and sent via Bluetooth to a tablet or mobile phone, where innovative algorithms analyze the data. Simultaneously, the RedFIR system, a radio-based tracking system, gathers position data with an accuracy of centimeters and is able to track athlete movements up to 40 km/h and ball movements, e.g., in football applications, up to 150 km/h. Additional energy harvesting systems will provide power generated from temperature differences and vibrations.

Energy-independent asset tracking system for logistics applications

Within this project, an ultra-low-power indoor-localization and tracking system for logistic applications is being implemented. A fundamental basis is an integrated ultra-low-power UHF wake-up receiver for the SRD bands at 433 MHz, 868 MHz, and 2.4 GHz with an active current consumption of 2 µA at 2.5 V supply for each frequency band. The indoor localization takes place at each object and not only in a central unit. Battery-driven wireless beacons placed at each landmark transmit position data, e.g., at 433 MHz every 60 seconds. Thus, hundreds of objects can detect their current position on their own without interaction with a central unit and can store the information as a local history log. Moreover, batteryless operation is performed using two energy harvesting devices: a thermoelectric and a piezoelectric generator. By this, both local temperature differences of about 1 Kelvin at the wireless module and small mechanical impulses are used to supply the wake-up receiver with electrical power.

LZE is supported by the Bavarian Ministry of Economic Affairs and Media, Energy and Technology.

At SEMICON Europa 2015, LZE can be found at booth 2092 (Science Park, Hall 2), as a member of the joint booth of the Fraunhofer Group for Microelectronics. The Fraunhofer Group for Microelectronics with 16 member institutes is a leading European R&D service provider for Smart Systems.

More information can be found on the LZE website http://www.lze.bayern.

Contact:

Dr. Bernd Fischer
Fraunhofer IISB
Schottkystraße 10
91058 Erlangen
Germany
lze@iisb.fraunhofer.de
Tel. +49-9131-761-106

Dr. Christian Forster
Fraunhofer IIS
Am Wolfsmantel 33
91058 Erlangen
Germany
christian.forster@iis.fraunhofer.de
Tel. +49-9131-776-1066

Weitere Informationen:

http://www.lze.bayern Leistungszentrum Elektroniksysteme
http://www.iisb.fraunhofer.de/presse Homepage Fraunhofer IISB

Kommunikation | Fraunhofer-Gesellschaft

More articles from Trade Fair News:

nachricht COMPAMED 2017: New manufacturing processes for customized products
06.12.2017 | IVAM Fachverband für Mikrotechnik

nachricht SYSTEMS INTEGRATION 2018 in Switzerland focuses on building blocks for industrial digitalization
20.11.2017 | IVAM Fachverband für Mikrotechnik

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>