Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fraunhofer FEP at YUGAGRO 2015

17.11.2015

From 24 – 27th of November 2015 Fraunhofer FEP is exhibiting its innovative technology for seed treatment at YUGAGRO, Krasnodar, Russia.

European Directive (2009/128/EC) and German National Action Plan encourage the introduction of economic and technological instruments with reduced use of pesticides. In this context, Fraunhofer FEP is ready to offer its environmentally-friendly technology for electron-treatment of seeds.


Seed for the next season

Fraunhofer FEP

This method works effectively against all pathogens on the surface and into the seed shell ensuring lasting protection by interrupting the chain of infection and eliminating harmful microorganisms. The method was labelled by the Julius-Kühn-Institute (JKI) as an “alternative method to chemical dressing”. Currently, companies like Nordkorn Saaten GmbH are actively using this method for commercial seed processing.

Sustainable agricultural practices are gaining relevance around the world. Therefore, Fraunhofer FEP along with its partner, the company Axellance Group, is bringing “the method of electron-treatment of seeds” to Russia and is going to showcase it at the YUGAGRO International trade fair on 24-27th of November 2015 at the Pavillion 4, booth 146.

About Fraunhofer FEP

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP works on innovative solutions in the fields of vacuum coating, surface treatment as well as organic semiconductors. The core competences electron beam technology, sputtering and plasma-activated deposition, high-rate PECVD as well as technologies for the organic electronics and IC/system design provide a basis for these activities.

Thus, Fraunhofer FEP offers a wide range of possibilities for research, development and pilot production, especially for the processing, sterilization, structuring and refining of surfaces as well as OLED microdisplays, organic and inorganic sensors, optical filters and flexible OLED lighting.

Our aim is to seize the innovation potential of the electron beam, plasma technology and organic electronics for new production processes and devices and to make it available for our customers. COMEDD (Center for Organics, Materials and Electronic Devices Dresden) with all known activities in organic electronics is now acting as a new business unit at Fraunhofer FEP, Dresden, Germany.

About Axellance Group

Axellance Group develops and supplies technological solutions based on electron beam accelerators. Solutions provided sustainably works for different industries: medical products, foods, polymers, semiconductors, pharmaceuticals and other segments.

The scope of supply always includes feasibility study of the project, including cost efficiency calculations, technologies compatibility and optimal project schedule. Company’s mission is to provide client’s business with smart solutions to accelerate its development.

Press contact:

Mrs. Annett Arnold

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP
Phone +49 351 2586 452 | annett.arnold@fep.fraunhofer.de
Winterbergstraße 28 | 01277 Dresden | Germany | www.fep.fraunhofer.de

Weitere Informationen:

http://s.fhg.de/qA4

Annett Arnold | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

Further reports about: Beam Electron Beam Elektronik FEP OLED Organic Electronics Plasma Plasmatechnik

More articles from Trade Fair News:

nachricht Fraunhofer HHI at Mobile World Congress with VR and 5G technologies
24.02.2017 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

nachricht MWC 2017: 5G Capital Berlin
24.02.2017 | FOKUS - Fraunhofer-Institut für Offene Kommunikationssysteme

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>