Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Complex hardmetal tools out of the 3D printer

21.09.2016

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of tungsten carbide were manufactured by uniaxial or cold isostatic dry pressing, extrusion and injection molding as well as by shape cutting at Fraunhofer IKTS. In traditional tool manufacturing, complex geometries, such as helical or meandering cooling ducts inside the component, are still implemented at high cost or not at all.


Wire die with integrated cooling duct in the raw state after sintering: at Fraunhofer IKTS in Dresden, hardmetal components are developed according to customer requirements via 3D binder jetting.

Design flexibility by additive manufacturing

"Meanwhile, it is known that through resource-saving and tool-free 3D printing even complex, individualized ceramic geometries can be realized quickly", says Dr. Tassilo Moritz, group leader "Shaping" at Fraunhofer IKTS.

Now IKTS scientists also succeeded in producing complex hardmetal tools via 3D printing processes. The binder jetting method is used in this case. The starting powders or granules are locally wetted with an organic binder by a print head and bound. The challenge was to get one hundred percent dense components, which have a perfect carbide microstructure and thus good mechanical properties.

Hardmetals consist of a ceramic hard material, such as tungsten carbide, and a viscous binder matrix of cobalt and nickel or iron.

By selectively varying the binder matrix, flexural strength, toughness and hardness can be adjusted individually – the lower the proportion of binder in the carbide, the harder the component. The prototypes manufactured at Fraunhofer IKTS have a binder content of twelve and seventeen percent by weight and show a structure comparable to conventional routes.

"Through the use of 3D printing for the production of complex green bodies and subsequent sintering under conventional sintering conditions, we achieve components with a typical hardmetal structure at one hundred percent density. Moreover, it is possible to set a homogeneous cobalt distribution achieving a comparable quality to conventionally produced high-performance tools," explains Johannes Pötschke, group leader "Hardmetals and Cermets" at Fraunhofer IKTS.

Fraunhofer IKTS supports manufacturers and users of hardmetal tools in the selection of appropriate materials and in product-specific development of 3D printing processes. For the first time, complex prototypes are presented at WorldPM 2016 from October 9 to 13 in Hamburg, Booth 85.

Weitere Informationen:

http://www.ikts.fraunhofer.de/en/communication/press_media/press_releases/2016_9...

Dipl.-Chem. Katrin Schwarz | Fraunhofer-Institut für Keramische Technologien und Systeme IKTS

Further reports about: 3D 3D printer 3D printing processes Fraunhofer-Institut IKTS carbide sintering

More articles from Trade Fair News:

nachricht Bug-proof communication with entangled photons
22.06.2017 | Fraunhofer-Gesellschaft

nachricht LZH at the LASER World of Photonics 2017: Light for Innovation
16.06.2017 | Laser Zentrum Hannover e.V.

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>