Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Compamed 2014: New manufacturing processes for medical products made of fiber-reinforced plastics

27.10.2014

Fiber-reinforced materials, which can be formed by the application of heat and thereby adapted to meet individual requirements, have enormous potential for medical engineering.

The use of thermoplastic materials for such composites has opened up new options for manufacturing parts such as adaptable micro-implants for neurosurgery or complex parts such as prostheses.


Puncture needle for minimally invasive interventions made from carbon-fiber-reinforced plastics

Source: Fraunhofer IPT


MRI-safe guidewire and catheter made from fiber-reinforced plastics

Source: Fraunhofer IPT

The Fraunhofer-Institute for Production Technology IPT will be presenting the results of their research work relating to all aspects of the manufacture of medical products from fiber-reinforced materials at the Compamed Medical Technology Trade Fair in Düsseldorf 12 - 14 November 2014 in Hall 8a, Booth K38.

Advanced fiber-reinforced materials are state-of-the-art in a number of applications in the aerospace sector as well as in the automotive industry and in the generation of renewable energy. They are up to 70 % lighter than metal or ceramic – but at the same time, they can withstand high levels of mechanical stress and are resistant to chemical influences. At Compamed, researchers from the Fraunhofer IPT in Aachen will be presenting the areas of application in medical engineering in which fiber-reinforced plastics look set to figure in the future.

Strong and pliable: Instruments for minimally invasive MRI procedures

Instruments for minimally invasive surgery are already being mass-produced from fiber-reinforced plastics using the micro-pullwinding process developed by the Fraunhofer IPT. This technique is used by the Fraunhofer IPT to produce three-layered micro-profiles with diameters well below 1 mm, which can be used in guide wires, cannulas and catheters.

The required bending and torsional characteristics of the instruments can be adjusted continuously to match the area of application in hand using precision-positioned reinforcement fibers with no interruption to the mass production process. The suitability of these instruments for use in magnetic resonance imaging (MRI) is an additional advantage: in contrast to metallic components, there is no occurrence of any spurious artefacts when these instruments are used.

The materials which can be transformed time and time again: Thermoplastic fiber-reinforced plastics

The researchers in Aachen are also developing methods and production systems geared to processing thermoplastic fiber composites for the manufacture of individually customizable medical products such as prostheses, implants or even wheelchairs. The resultant components can be reformed following the initial hardening process, thus ensuring that, unlike similar parts made of thermosetting materials, they can be adapted to suit individual requirements. Many of the thermoplastic matrix materials have previously been licensed for use in medical engineering and are therefore no longer subject to protracted licensing procedures.

Diverse range of manufacturing processes for customized mass production

The Fraunhofer IPT is also currently exploring the application of laser radiation in welding processes to bond multi-part components with complex structures securely together thereby completely eliminating the need to use noxious adhesives. The aim here is to enable processes already well-established in plastic-welding environments to be transferred to the manufacture of medical products.

The focus of laser-assisted tape-laying and winding technique developed at the Fraunhofer IPT is used to manufacture load-bearing structures from fiber-reinforced lightweight engineering materials in a process which is both resource and energy efficient.

The engineers from Aachen work closely with medical facilities and commercial medical technology providers in the drive to develop new manufacturing processes suitable for the mass production of customizable products as well as for the design and construction of fiber-reinforced components for medical engineering applications.

Contact

Dipl.-Ing. Alexander Brack
Fraunhofer Institute for Production Technology IPT
Steinbachstrasse 17
52074 Aachen
Germany
Phone +49 241 8904-355
alexander.brack@ipt.fraunhofer.de
www.ipt.fraunhofer.de  

Weitere Informationen:

http://www.ipt.fraunhofer.de/en/Press/Pressreleases/20141024compamed2014.html

Susanne Krause | Fraunhofer-Institut

More articles from Trade Fair News:

nachricht Fraunhofer HHI at Mobile World Congress with VR and 5G technologies
24.02.2017 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

nachricht MWC 2017: 5G Capital Berlin
24.02.2017 | FOKUS - Fraunhofer-Institut für Offene Kommunikationssysteme

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>