Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Compamed 2014: New manufacturing processes for medical products made of fiber-reinforced plastics

27.10.2014

Fiber-reinforced materials, which can be formed by the application of heat and thereby adapted to meet individual requirements, have enormous potential for medical engineering.

The use of thermoplastic materials for such composites has opened up new options for manufacturing parts such as adaptable micro-implants for neurosurgery or complex parts such as prostheses.


Puncture needle for minimally invasive interventions made from carbon-fiber-reinforced plastics

Source: Fraunhofer IPT


MRI-safe guidewire and catheter made from fiber-reinforced plastics

Source: Fraunhofer IPT

The Fraunhofer-Institute for Production Technology IPT will be presenting the results of their research work relating to all aspects of the manufacture of medical products from fiber-reinforced materials at the Compamed Medical Technology Trade Fair in Düsseldorf 12 - 14 November 2014 in Hall 8a, Booth K38.

Advanced fiber-reinforced materials are state-of-the-art in a number of applications in the aerospace sector as well as in the automotive industry and in the generation of renewable energy. They are up to 70 % lighter than metal or ceramic – but at the same time, they can withstand high levels of mechanical stress and are resistant to chemical influences. At Compamed, researchers from the Fraunhofer IPT in Aachen will be presenting the areas of application in medical engineering in which fiber-reinforced plastics look set to figure in the future.

Strong and pliable: Instruments for minimally invasive MRI procedures

Instruments for minimally invasive surgery are already being mass-produced from fiber-reinforced plastics using the micro-pullwinding process developed by the Fraunhofer IPT. This technique is used by the Fraunhofer IPT to produce three-layered micro-profiles with diameters well below 1 mm, which can be used in guide wires, cannulas and catheters.

The required bending and torsional characteristics of the instruments can be adjusted continuously to match the area of application in hand using precision-positioned reinforcement fibers with no interruption to the mass production process. The suitability of these instruments for use in magnetic resonance imaging (MRI) is an additional advantage: in contrast to metallic components, there is no occurrence of any spurious artefacts when these instruments are used.

The materials which can be transformed time and time again: Thermoplastic fiber-reinforced plastics

The researchers in Aachen are also developing methods and production systems geared to processing thermoplastic fiber composites for the manufacture of individually customizable medical products such as prostheses, implants or even wheelchairs. The resultant components can be reformed following the initial hardening process, thus ensuring that, unlike similar parts made of thermosetting materials, they can be adapted to suit individual requirements. Many of the thermoplastic matrix materials have previously been licensed for use in medical engineering and are therefore no longer subject to protracted licensing procedures.

Diverse range of manufacturing processes for customized mass production

The Fraunhofer IPT is also currently exploring the application of laser radiation in welding processes to bond multi-part components with complex structures securely together thereby completely eliminating the need to use noxious adhesives. The aim here is to enable processes already well-established in plastic-welding environments to be transferred to the manufacture of medical products.

The focus of laser-assisted tape-laying and winding technique developed at the Fraunhofer IPT is used to manufacture load-bearing structures from fiber-reinforced lightweight engineering materials in a process which is both resource and energy efficient.

The engineers from Aachen work closely with medical facilities and commercial medical technology providers in the drive to develop new manufacturing processes suitable for the mass production of customizable products as well as for the design and construction of fiber-reinforced components for medical engineering applications.

Contact

Dipl.-Ing. Alexander Brack
Fraunhofer Institute for Production Technology IPT
Steinbachstrasse 17
52074 Aachen
Germany
Phone +49 241 8904-355
alexander.brack@ipt.fraunhofer.de
www.ipt.fraunhofer.de  

Weitere Informationen:

http://www.ipt.fraunhofer.de/en/Press/Pressreleases/20141024compamed2014.html

Susanne Krause | Fraunhofer-Institut

More articles from Trade Fair News:

nachricht ILA 2018: Cost-effective carbon fibers for light-weight construction
18.04.2018 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Fraunhofer IDMT presents method for airborne-sound based quality assurance
18.04.2018 | Fraunhofer-Institut für Digitale Medientechnologie IDMT

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

Im Focus: Stronger evidence for a weaker Atlantic overturning

The Atlantic overturning – one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards – is weaker today than any time before in more than 1000 years. Sea surface temperature data analysis provides new evidence that this major ocean circulation has slowed down by roughly 15 percent since the middle of the 20th century, according to a study published in the highly renowned journal Nature by an international team of scientists. Human-made climate change is a prime suspect for these worrying observations.

“We detected a specific pattern of ocean cooling south of Greenland and unusual warming off the US coast – which is highly characteristic for a slowdown of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Improved stability of plastic light-emitting diodes

19.04.2018 | Power and Electrical Engineering

Enduring cold temperatures alters fat cell epigenetics

19.04.2018 | Life Sciences

New capabilities at NSLS-II set to advance materials science

18.04.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>