Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Compamed 2014: New manufacturing processes for medical products made of fiber-reinforced plastics

27.10.2014

Fiber-reinforced materials, which can be formed by the application of heat and thereby adapted to meet individual requirements, have enormous potential for medical engineering.

The use of thermoplastic materials for such composites has opened up new options for manufacturing parts such as adaptable micro-implants for neurosurgery or complex parts such as prostheses.


Puncture needle for minimally invasive interventions made from carbon-fiber-reinforced plastics

Source: Fraunhofer IPT


MRI-safe guidewire and catheter made from fiber-reinforced plastics

Source: Fraunhofer IPT

The Fraunhofer-Institute for Production Technology IPT will be presenting the results of their research work relating to all aspects of the manufacture of medical products from fiber-reinforced materials at the Compamed Medical Technology Trade Fair in Düsseldorf 12 - 14 November 2014 in Hall 8a, Booth K38.

Advanced fiber-reinforced materials are state-of-the-art in a number of applications in the aerospace sector as well as in the automotive industry and in the generation of renewable energy. They are up to 70 % lighter than metal or ceramic – but at the same time, they can withstand high levels of mechanical stress and are resistant to chemical influences. At Compamed, researchers from the Fraunhofer IPT in Aachen will be presenting the areas of application in medical engineering in which fiber-reinforced plastics look set to figure in the future.

Strong and pliable: Instruments for minimally invasive MRI procedures

Instruments for minimally invasive surgery are already being mass-produced from fiber-reinforced plastics using the micro-pullwinding process developed by the Fraunhofer IPT. This technique is used by the Fraunhofer IPT to produce three-layered micro-profiles with diameters well below 1 mm, which can be used in guide wires, cannulas and catheters.

The required bending and torsional characteristics of the instruments can be adjusted continuously to match the area of application in hand using precision-positioned reinforcement fibers with no interruption to the mass production process. The suitability of these instruments for use in magnetic resonance imaging (MRI) is an additional advantage: in contrast to metallic components, there is no occurrence of any spurious artefacts when these instruments are used.

The materials which can be transformed time and time again: Thermoplastic fiber-reinforced plastics

The researchers in Aachen are also developing methods and production systems geared to processing thermoplastic fiber composites for the manufacture of individually customizable medical products such as prostheses, implants or even wheelchairs. The resultant components can be reformed following the initial hardening process, thus ensuring that, unlike similar parts made of thermosetting materials, they can be adapted to suit individual requirements. Many of the thermoplastic matrix materials have previously been licensed for use in medical engineering and are therefore no longer subject to protracted licensing procedures.

Diverse range of manufacturing processes for customized mass production

The Fraunhofer IPT is also currently exploring the application of laser radiation in welding processes to bond multi-part components with complex structures securely together thereby completely eliminating the need to use noxious adhesives. The aim here is to enable processes already well-established in plastic-welding environments to be transferred to the manufacture of medical products.

The focus of laser-assisted tape-laying and winding technique developed at the Fraunhofer IPT is used to manufacture load-bearing structures from fiber-reinforced lightweight engineering materials in a process which is both resource and energy efficient.

The engineers from Aachen work closely with medical facilities and commercial medical technology providers in the drive to develop new manufacturing processes suitable for the mass production of customizable products as well as for the design and construction of fiber-reinforced components for medical engineering applications.

Contact

Dipl.-Ing. Alexander Brack
Fraunhofer Institute for Production Technology IPT
Steinbachstrasse 17
52074 Aachen
Germany
Phone +49 241 8904-355
alexander.brack@ipt.fraunhofer.de
www.ipt.fraunhofer.de  

Weitere Informationen:

http://www.ipt.fraunhofer.de/en/Press/Pressreleases/20141024compamed2014.html

Susanne Krause | Fraunhofer-Institut

More articles from Trade Fair News:

nachricht Bug-proof communication with entangled photons
22.06.2017 | Fraunhofer-Gesellschaft

nachricht LZH at the LASER World of Photonics 2017: Light for Innovation
16.06.2017 | Laser Zentrum Hannover e.V.

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>