Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Compamed 2014: New manufacturing processes for medical products made of fiber-reinforced plastics

27.10.2014

Fiber-reinforced materials, which can be formed by the application of heat and thereby adapted to meet individual requirements, have enormous potential for medical engineering.

The use of thermoplastic materials for such composites has opened up new options for manufacturing parts such as adaptable micro-implants for neurosurgery or complex parts such as prostheses.


Puncture needle for minimally invasive interventions made from carbon-fiber-reinforced plastics

Source: Fraunhofer IPT


MRI-safe guidewire and catheter made from fiber-reinforced plastics

Source: Fraunhofer IPT

The Fraunhofer-Institute for Production Technology IPT will be presenting the results of their research work relating to all aspects of the manufacture of medical products from fiber-reinforced materials at the Compamed Medical Technology Trade Fair in Düsseldorf 12 - 14 November 2014 in Hall 8a, Booth K38.

Advanced fiber-reinforced materials are state-of-the-art in a number of applications in the aerospace sector as well as in the automotive industry and in the generation of renewable energy. They are up to 70 % lighter than metal or ceramic – but at the same time, they can withstand high levels of mechanical stress and are resistant to chemical influences. At Compamed, researchers from the Fraunhofer IPT in Aachen will be presenting the areas of application in medical engineering in which fiber-reinforced plastics look set to figure in the future.

Strong and pliable: Instruments for minimally invasive MRI procedures

Instruments for minimally invasive surgery are already being mass-produced from fiber-reinforced plastics using the micro-pullwinding process developed by the Fraunhofer IPT. This technique is used by the Fraunhofer IPT to produce three-layered micro-profiles with diameters well below 1 mm, which can be used in guide wires, cannulas and catheters.

The required bending and torsional characteristics of the instruments can be adjusted continuously to match the area of application in hand using precision-positioned reinforcement fibers with no interruption to the mass production process. The suitability of these instruments for use in magnetic resonance imaging (MRI) is an additional advantage: in contrast to metallic components, there is no occurrence of any spurious artefacts when these instruments are used.

The materials which can be transformed time and time again: Thermoplastic fiber-reinforced plastics

The researchers in Aachen are also developing methods and production systems geared to processing thermoplastic fiber composites for the manufacture of individually customizable medical products such as prostheses, implants or even wheelchairs. The resultant components can be reformed following the initial hardening process, thus ensuring that, unlike similar parts made of thermosetting materials, they can be adapted to suit individual requirements. Many of the thermoplastic matrix materials have previously been licensed for use in medical engineering and are therefore no longer subject to protracted licensing procedures.

Diverse range of manufacturing processes for customized mass production

The Fraunhofer IPT is also currently exploring the application of laser radiation in welding processes to bond multi-part components with complex structures securely together thereby completely eliminating the need to use noxious adhesives. The aim here is to enable processes already well-established in plastic-welding environments to be transferred to the manufacture of medical products.

The focus of laser-assisted tape-laying and winding technique developed at the Fraunhofer IPT is used to manufacture load-bearing structures from fiber-reinforced lightweight engineering materials in a process which is both resource and energy efficient.

The engineers from Aachen work closely with medical facilities and commercial medical technology providers in the drive to develop new manufacturing processes suitable for the mass production of customizable products as well as for the design and construction of fiber-reinforced components for medical engineering applications.

Contact

Dipl.-Ing. Alexander Brack
Fraunhofer Institute for Production Technology IPT
Steinbachstrasse 17
52074 Aachen
Germany
Phone +49 241 8904-355
alexander.brack@ipt.fraunhofer.de
www.ipt.fraunhofer.de  

Weitere Informationen:

http://www.ipt.fraunhofer.de/en/Press/Pressreleases/20141024compamed2014.html

Susanne Krause | Fraunhofer-Institut

More articles from Trade Fair News:

nachricht SYSTEMS INTEGRATION 2018 in Switzerland focuses on building blocks for industrial digitalization
20.11.2017 | IVAM Fachverband für Mikrotechnik

nachricht Medica 2017: New software enables early diagnosis of arteriosclerosis
06.11.2017 | Technische Universität Kaiserslautern

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>