Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CeBIT 2017: Analysis software for neural networks – Watching computers think

13.03.2017

Neural networks are commonly used today to analyze complex data – for instance to find clues to illnesses in genetic information. Ultimately, though, no one knows how these networks actually work exactly. That is why Fraunhofer researchers developed software that enables them to look into these black boxes and analyze how they function. The researchers will present their software at CeBIT in Hannover from March 20 to 24, 2017 (Hall 6, Booth B 36).

Sorting photos on the computer used to be a tedious job. Today, you simply click on face recognition and instantly get a selection of photos of your daughter or son. Computers have gotten very good at analyzing large volumes of data and searching for certain structures, such as faces in images. This is made possible by neural networks, which have developed into an established and sophisticated IT analysis method.


Fraunhofer HHI’s analysis software uses algorithms to visualize complex learning processes (schematic diagram).

© Fraunhofer HHI

The problem is that it isn’t just researchers who currently don’t know exactly how neural networks function step by step, or why they reach one result or another. Neural networks are, in a sense, black boxes – computer programs that people feed values into and that reliably return results. If you want to teach a neural network, for instance, to recognize cats, then you instruct the system by feeding it thousands of cat pictures. Just like a small child that slowly learns to distinguish cats from dogs, the neural network, too, learns automatically.

“In many cases, though, researchers are less interested in the result and far more interested in what the neural network actually does – how it reaches decisions,” says Dr. Wojciech Samek, head of the Machine Learning Group at Fraunhofer Heinrich Hertz Institute HHI in Berlin. So Samek and his team, in collaboration with colleagues from TU Berlin (Prof. Dr. Klaus-Robert Müller), developed a method that makes it possible to watch a neural network think.

Machine learning enables customized cancer Treatments

This is important, for instance, in detecting diseases. We already have the capability today to feed patients’ genetic data into computers – or neural networks – which then analyze the probability of a patient having a certain genetic disorder. “But it would be much more interesting to know precisely which characteristics the program bases its decisions on,” says Samek. It could be certain genetic defects the patient has – and these, in turn, could be a possible target for a cancer treatment that is tailored to individual patients.

Neural networks in reverse

The researchers’ method allows them to watch the work of the neural networks in reverse: they work through the program backwards, starting from the result. “We can see exactly where a certain group of neurons made a certain decision, and how strongly this decision impacted the result,” says Samek. The researchers have already impressively demonstrated – multiple times – that the method works. For instance, they compared two programs that are publicly available on the Internet and that are both capable of recognizing horses in images. The result was surprising. The first program actually recognized the horses’ bodies. The second one, however, focused on the copyright symbols on the photos, which pointed to forums for horse lovers, or riding and breeding associations, enabling the program to achieve a high success rate even though it had never learned what horses look like.

Applications in big data

“So you can see how important it is to understand exactly how such a network functions,” says Samek. This knowledge is also of particular interest to industry. “It is conceivable, for instance, that the operating data of a complex production plant could be analyzed to deduce which parameters impact product quality or cause it to fluctuate,” he says. The invention is also interesting for many other applications that involve the neural analysis of large or complex data volumes. “In another experiment, we were able to show which parameters a network uses to decide whether a face appears young or old.”

According to Samek, for a long time banks have even been using neural networks to analyze bank customers’ creditworthiness. To do this, large volumes of customer data are collected and evaluated by a neural network. “If we knew how the network reaches its decision, we could reduce the data volume right from the start by selecting the relevant parameters,” he says. This would certainly be in the customers’ interests, too. At the CeBIT trade fair in Hannover from March 20 to 24, 2017, Samek’s team of researchers will demonstrate how they use their software to analyze the black boxes of neural networks – and how these networks can deduce a person’s age or sex from their face, or recognize animals.

Weitere Informationen:

https://www.hhi.fraunhofer.de/en/press-media/press-releases.html

Anne Rommel | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

More articles from Trade Fair News:

nachricht Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018
23.04.2018 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Joining metals without welding
23.04.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>