Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cebit 2017: A new simulation process makes complex hardware and software compatible

06.03.2017

Technology used in cars, aeroplanes and industrial robots is becoming increasingly complex. Can the software be extended? How does the system handle errors?

More and more companies are tasked with such questions. A simulation method, developed by researchers in Kaiserslautern, will provide a solution. With this, they verify in what combination hardware and software systems function correctly together.


Researchers in Kaiserslautern, Dr. Thomas Kuhn (left) and Matthias Jung, developed a simulation method to verify in what combination hardware and software systems function correctly together.

Credit: Thomas Koziel

In addition, the researchers can examine the reaction of systems critical for safety in the occurrence of errors. At the Cebit computer trade fair in Hannover, researchers will present their technology at the research stand of Federal State Rhineland-Palatinate (hall 6, stand C17).

Joint press release by University of Kaiserslautern and Fraunhofer Institute for Experimental Software Engineering IESE

Nowadays, cars comprise a multitude of hardware and software components: for example, if all functions correctly, a sensor on the wheel of a car will detect whether the wheels are locked or the car is sliding. At the same time, other sensors monitor whether the brakes are functional. Here, these systems communicate simultaneously with each other.

Software systems comprise a multitude of such components. Developers must examine whether they are compatible with each other. “This is becoming increasingly complex with new hardware and software”, explains Matthias Jung, doctoral student at the Microelectronic Systems Design Research Group, led by Professor Dr. Norbert Wehn at the University of Kaiserslautern. “There are countless possibilities to combine such systems. It must always be determined whether the technology will run smoothly with the desired requirements”.

Together with the colleagues of Dr. Thomas Kuhn from the Fraunhofer Institute for Experimental Software Engineering IESE, researchers at the High Performance Center Simulation- and Software-based Innovation have developed a process, which is dedicated to such issues. “With our simulation platform FERAL, we can already examine whether hardware and software components will function together during development”, explains Dr. Kuhn, Head of Embedded Software Engineering at Fraunhofer IESE. “FERAL” is the abbreviation for Fast Evaluation on Requirements and Architectural Level.

“We can calculate a vast range of scenarios with this, whether for existing systems or new versions”, Dr. Kuhn continues. “Furthermore, we can for example test software and hardware that does not yet even exist using our virtual platform”.

With the process, researchers can also detect possible errors that are built into the technology. “This makes this method interesting for virtual product development”, explains Matthias Jung. The researchers provide the system as a service to middle-sized companies and large corporations. The technology is especially important for testing embedded systems. These microcomputers, that interact with their technical surroundings, are built into a multitude of products, including cars, aeroplanes, smartphones, as well as pacemakers and dialysis machines. Moreover, researchers can examine the reaction of systems critical for safety - such as in aeroplanes and industrial production plants - with regard to the occurrence of errors.

The team led by Kuhn and Jung have already collaborated with clients from the commercial vehicles industry and plant construction sector. They will present FERAL at the Cebit, at the research stand of Federal State Rhineland-Palatinate.

Contact persons:
Dipl.Ing. Matthias Jung
University of Kaiserslautern
Tel.: 0631 205- 3579
Email: jungma[at]eit.uni-kl.de

Dr. Thomas Kuhn
Fraunhofer Institute for Experimental Software Engineering IESE
Tel.: 0631 6800-2177
Email: thomas.kuhn[at]iese.fraunhofer.de

Katrin Müller | Technische Universität Kaiserslautern
Further information:
http://www.uni-kl.de

More articles from Trade Fair News:

nachricht Hannover Messe 2018: Cognitive system for predictive acoustic maintenance
19.04.2018 | Fraunhofer-Institut für Digitale Medientechnologie IDMT

nachricht ILA 2018: Cost-effective carbon fibers for light-weight construction
18.04.2018 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>