Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bug-proof communication with entangled photons

22.06.2017

Due to the rapidly growing processing power of computers, conventional encryption of data is becoming increasingly insecure. One solution is coding with entangled photons. Fraunhofer researchers are developing a quantum coding source that allows the transport of entangled photons from satellites, thereby making an important step in the direction of tap-proof communication. In addition to the quantum source, researchers from various Fraunhofer institutes will be presenting other exciting optoelectronic exhibits at the LASER World of Photonics trade fair in Munich from June 26 - 29, 2017 (Hall A2, Booth 431 and Hall B3, Booth 327).

Whether it is information resulting from the communication between two banks, government organizations or private individuals, the encryption of data is now mostly based on mathematical methods.


Fraunhofer IOF‘s quantum source. Designed to be fully operational even after extreme stress.

Fraunhofer IOF

The problem is that the increasing processing power of computers makes the decoding of encrypted messages progressively easier – evelopments such as quantum computers could even mean the elimination of current encryption methods, since much more effective decryption algorithms can be used in this regard than is possible with conventional computers.

Encryption by means of a physical principle, the so-called quantum entanglement offers a solution: first, twin-photons are generated which are entangled with each other regarding certain quantum states and which are therefore dependent upon each other.

In other words, if the polarization of the one photon is measured, for example, then that of the twin is also known automatically. What is special about this is that the effect works independently of the distance between the photons. Based on this, codes can be generated that allow the sender and receiver to see at a glance whether third parties have attempted to manipulate or tap the codes.

"The central element here is the quantum source in which the photons are entangled," explains Dr. Erik Beckert of the Fraunhofer Institute for Applied Optics and Precision Engineering IOF in Jena, Germany. "The entangled photons are generated in a sophisticated laser-optic assembly and then directed via different channels to the two parties that want to protect their communication from listeners."

Photons from space

But how do the entangled photons reach their destination? If, for example, they are sent through the air or glass fiber via an open jet line, the range is limited, since the turbulence of the atmosphere or the damping of the glass fiber interferes with the entanglement.

The solution: The quantum source distributes the entangled photons from a satellite. As a result, the photons only have to travel a relatively short distance through the atmosphere until they reach their receiver. To place a quantum source on a satellite, though, it has to be extremely stable. This is because it has to resist both the impacts of a rocket launch as well as the special conditions in space, such as strong temperature fluctuations and radiation.

Researchers at the Fraunhofer IOF have found an answer and are developing a quantum source which is so stable that the precise calibration and the difficult adjustments are not disturbed even by the extreme stress of a rocket launch or the inhospitable conditions in space. "Our quantum source is an example of optomechanical engineering," says Beckert. "Laser systems for entangling and distributing photons are very sensitive in terms of accuracy. Even the smallest changes in the adjustment make the whole system unusable. A system has to be so sturdy that its full performance is not even affected by a rocket launch."

Fraunhofer at the LASER World of Photonics

In addition to the engineering model of the Fraunhofer IOF’s quantum source, nine other institutes will be presenting the latest developments from the field of optoelectronics at the LASER World of Photonics trade fair. The Fraunhofer experts will be demonstrating their technology skills by means of numerous exhibits at two booths (Booth 431 in Hall A2 and Booth 327 in Hall B3).

The core of their activities are contract research and development in the broad field of optical technologies. The spectrum ranges from optics design and laser source development through optical measuring systems and optomechanical precision systems to the micro- and macro-processing of different materials with lasers. The offer includes process and system solutions as well as feasibility studies and qualified consulting.

Janis Eitner | Fraunhofer-Gesellschaft
Further information:
http://www.fraunhofer.de

More articles from Trade Fair News:

nachricht Fraunhofer HHI presents latest VR and 5G technologies at Mobile World Congress
19.02.2018 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

nachricht Come Together: Teamwork Achieves Optimum Composite Design
14.02.2018 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>