Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bright prospects – Indestructible part markings for metal processing

01.04.2015

A tag for metal components based on ceramic phosphors withstands high temperatures without affecting the properties of the component itself. The complete solution covering all stages from label printing to  readout will be presented by Fraunhofer IKTS researchers from April 13 to 17 at Hannover Messe.

Individual marking of heat-treated metal components


Sample under UV.


Sample by daylight.

For a reliable, clear and tamper-proof marking of semi-finished and end products there are a variety of labeling solutions on the market. These range from a simple serial number to integrated RFID chips (Radio Frequency IDentification).

However, these solutions do not meet the specific requirements of metal processing. Inks, for example, turn out to be problematical as they are thermally stable only up to 250 °C. Thus, their use is not possible at the elevated workpiece temperatures of up to 1250 °C.

In addition, during processing the material surface may change, which can reduce the contrast between the material and the marking so that automated readout fails. Stickon labels in turn apply too much material and thus interfere with further processing.

Markings that withstand high temperatures and chemical influences

Researchers at Fraunhofer IKTS took this challenge and developed a solution for the individual component marking. Core element of the process are ceramic phosphors that respond to optical excitation with a pronounced luminescence.

These phosphors are very robust: they withstand high temperatures, are resistant to harsh chemical environment, and can be added to a variety of materials. Thus, it is possible to incorporate the phosphors directly into inks or pastes, and to print on the metal surface.

“Depending on whether static or dynamic information is required, screen or inkjet printing is used. Both processes can be integrated into production lines. As only a minimal amount of material is printed, an influence on the workpiece characteristics or the adhesion of coatings is excluded”, explains Dr. Thomas Härtling, scientist at Fraunhofer IKTS.

Inks and pastes dosed with phosphors are safe and environmentally friendly, which means no additional health and safety measures are necessary. Due to the high contrast between marking and substrate, automated readout is possible in all lighting situations.

Protection against plagiarism by customized label properties

Both spectral properties and the luminescence decay time of the marking can be customized. Since this adjustment can take place both during and after the synthesis of phosphors, properties that can only be copied at costs arise. This advantage may, for example, be used in labeling of spare parts or other components.

From April 13 to 17, 2015, Fraunhofer IKTS researchers answer your questions in Hall 6 on Booth B16.

Weitere Informationen:

http://www.ikts.fraunhofer.de/content/dam/ikts/de/doc2/Messen/PI_Bright%20prospe..

Katrin Schwarz | Fraunhofer-Institut für Keramische Technologien und Systeme IKTS

More articles from Trade Fair News:

nachricht Innovative Infrared Emitters Optimize the Manufacture of Vehicle Interior Fittings Using Vacuum Lamination
01.08.2017 | Heraeus Noblelight GmbH

nachricht Bug-proof communication with entangled photons
22.06.2017 | Fraunhofer-Gesellschaft

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>