Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Battery Production: Laser Light instead of Oven-Drying and Vacuum Technology

05.10.2015

At the exhibition BATTERY + STORAGE as part of WORLD OF ENERGY SOLUTIONS 2015 in Stuttgart, the Fraunhofer Institutes for Laser Technology ILT and for Ceramic Technologies and Systems IKTS will be showing how laser technology can be used to manufacture batteries both cost- and energy-efficiently.

In the truest sense, it’s all about watts at the Dresden-based Fraunhofer Institute for Ceramic Technologies and Systems IKTS and the Aachen-based Fraunhofer Institute for Laser Technology ILT. The joint project “DRYLAS - Laser-based Drying of Battery Electrode Slurries” focusses on the energy-efficient drying of electrode layers, so-called slurries, which are applied in a wet-chemical process to the current-conducting metal foils during battery production.


In the project ProSoLitBat, funded by BMBF, a roll-to-roll process chain has been generated for the continuous production of lithium solid electrolyte batteries.

© Fraunhofer ILT, Aachen, Germany


Scientists of the Fraunhofer Institutes IKTS and ILT have halved the energy consumption during drying of the layers applied with a wet-chemical process thanks to a laser-based inline drying module.

© Fraunhofer ILT, Aachen, Germany

Until now, continuous furnaces have been used, which remove the solvent contained in the slurry during the drying process. Dr. Dominik Hawelka, a scientist at the Fraunhofer ILT, gets to the heart of the reasoning behind this research project: “In these furnaces, the energy deposition is not very efficient as compared to a laser treatment. That is why we have decided to use the very precisely controllable laser radiation as the drying tool for this application.”

Energy consumption halved

The two institutes have designed an in-line process and a fiber-laser based drying module which has already proven itself in initial tests in a so-called roll-to-roll plant of the Fraunhofer IKTS in Dresden. “The laser radiation is absorbed directly in the slurry and minimizes heat losses to the surroundings,” says the physicist. “Our drying process uses about half of the energy that the continuous furnace needs.”

The two institutes have also demonstrated that the fiber-laser dried electrodes can be used to build sound battery cells that work just as flawlessly as components treated conventionally in a continuous furnace.

Continuous production with a roll-to-roll process chain

The Fraunhofer ILT is also using its expertise in laser technology to put photonic process and plant engineering into practice: in particular, in the project ProSoLitBat, funded by the German Federal Ministry of Education and Research (BMBF) and coordinated by SCHMID Energy Systems GmbH from Dunningen.

This project focuses on the industrial, continuous production of lithium, solid-state batteries in thin film technology. The aim of the current project, which will run until 2017, is to make a so-called roll-to-roll process chain viable as an alternative to the vacuum method previously used. The discontinuous, or batch-type vacuum process is extremely complex and costly.

“In contrast, continuous production can produce significantly higher quantities at a lower cost, which will help the solid-state lithium batteries to find wider applications,” explains Dipl.-Ing. Christian Hördemann, a scientist at Fraunhofer ILT. “We have built a pilot plant that works with an inert gas atmosphere, and with it we can now pattern and decollate batteries with integrated ultrafast lasers.” The company SCHMID Energy Systems shall make the process from Aachen ready for series production.

Fraunhofer Battery Alliance at the BATTERY + STORAGE trade fair

You can obtain details on both projects at the booth of the Fraunhofer Battery Alliance (Hall C2 B 41) in the BATTERY + STORAGE exhibition area at the WORLD OF ENERGY SOLUTIONS in Stuttgart. This international trade fair and conference for the convergence of energy generation, storage systems and mobility solutions will take place from October 12 to 14, 2015.

Contact

Dipl.-Ing- Christian Hördemann
Thin Film Processing Group
Telephone +49 241 8906-8013
christian.hoerdemann@ilt.fraunhofer.de

Dr.-Ing. Dominik Hawelka
Micro and Nanostructuring Group
Telephone +49 241 8906-676
dominik.hawelka@ilt.fraunhofer.de

Fraunhofer Institute for Laser Technology ILT
Steinbachstraße 15
52074 Aachen, Germany

Weitere Informationen:

http://www.ilt.fraunhofer.de
https://www.fraunhofer.de/en/institutes-research-establishments/groups-alliances...

Petra Nolis | Fraunhofer-Institut für Lasertechnik ILT

More articles from Trade Fair News:

nachricht COMPAMED 2017: New manufacturing processes for customized products
06.12.2017 | IVAM Fachverband für Mikrotechnik

nachricht SYSTEMS INTEGRATION 2018 in Switzerland focuses on building blocks for industrial digitalization
20.11.2017 | IVAM Fachverband für Mikrotechnik

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>