Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Visual intelligence is not the same as IQ

09.11.2017

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these variations are not associated with individuals' general intelligence, or IQ.


The Novel Object Memory Test is based on individual's ability to recognize greebles, ziggerins and sheinbugs (top to bottom) -- novel objects that psychologist Isabel Gauthier and her colleagues have invented to study visual intelligence.

Credit: Isabel Gauthier, Vanderbilt University

The research is reported in a paper titled "Domain-specific and domain-general individual differences in visual object recognition" published in the September issue of the journal Cognition and the implications are discussed in a review article in press at Current Directions in Psychological Science.

"People may think they can tell how good they are at identifying objects visually," said Isabel Gauthier, David K. Wilson Professor of Psychology at Vanderbilt University, who headed the study. "But it turns out that they are not very good at evaluating their own skills relative to others."

In the past, research in visual object recognition has focused largely on what people have in common, but Gauthier became interested in the question of how much visual ability varies among individuals. To answer this question, she and her colleagues had to develop a new test, which they call the Novel Object Memory Test (NOMT), to measure people's ability to identify unfamiliar objects.

Gauthier first wanted to gauge public opinions about visual skills. She did so by surveying 100 laypeople using the Amazon Mechanical Turk crowdsourcing service. She found that respondents generally consider visual tasks as fairly different from other tasks related to general intelligence. She also discovered that they feel there is less variation in people's visual skills than there is in non-visual skills such as verbal and math ability.

The main problem that Gauthier and colleagues had to address in assessing individuals' innate visual recognition ability was familiarity. The more time a person spends learning about specific types of objects, such as faces, cars or birds, the better they get at identifying them. As a result, performance on visual recognition tests that use images of common objects are a complex mixture of people's visual ability and their experience with these objects. Importantly, they have proven to be a poor predictor of how well someone can learn to identify objects in a new domain.

Gauthier addressed this problem by using novel computer-generated creatures called greebles, sheinbugs and ziggerins to study visual recognition. The basic test consists of studying six target creatures, followed by a number of test trials displaying creatures in sets of three. Each set contains a creature from the target group along with two unfamiliar creatures, and the participant is asked to pick out the creature that is familiar.

Analyzing the results from more than 2000 subjects, Gauthier and colleagues discovered that the ability to recognize one kind of creature was well predicted by how well subjects could recognize the other kind, although these objects were visually quite different. This confirmed the new test can predict the ability to learn new categories.

The psychologists also used performance on several IQ-related tests and determined that the visual ability measured on the NOMT is distinct from and independent of general intelligence.

"This is quite exciting because performance on cognitive skills is almost always associated with general intelligence," Gauthier said. "It suggests that we really can learn something new about people using these tests, over and beyond all the abilities we already know how to measure." Although the study confirms the popular intuition that visual skill is different from general intelligence, it found that individual variations in visual ability are much larger than most people think. For instance, on one metric, called the coefficient of variation, the spread of people was wider on the NOMT than on a nonverbal IQ test.

"A lot of jobs and hobbies depend on visual skills," Gauthier said. "Because they are independent of general intelligence, the next step is to explore how we can use these tests in real-world applications where performance could not be well predicted before."

###

The research was funded by National Science Foundation awards SBE-1640681 and BCS-1534866.

David F. Salisbury | Vanderbilt University

Further reports about: IQ IQ-related tests Vanderbilt Visual intelligence visual recognition

More articles from Social Sciences:

nachricht Illinois researchers researchers find tweeting in cities lower than expected
21.02.2018 | University of Illinois College of Engineering

nachricht Polluted air may pollute our morality
08.02.2018 | Association for Psychological Science

All articles from Social Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>