Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Thickness of grey matter predicts ability to recognize faces and objects

10.11.2015

When you see a familiar face, when a bird-watcher catches a glimpse of a rare bird perched on a limb, or when a car-fancier spots a classic auto driving past, the same small region in the brain becomes engaged.

For almost two decades, neuroscientists have known that this area, called the fusiform face area (FFA), plays a vital role in the brain's ability to recognize faces and objects that an individual has learned to identify.


According to the study, men who had a thicker cortex in the fusiform face areas were better at recognizing inanimate objects like cars while those who had a thinner cortex in the fusiform face areas were better at recognizing faces.

Credit: Rankin McGugin, Vanderbilt University

Now a new study, accepted for publication by the Journal of Cognitive Neuroscience, has taken this a step further by finding that the thickness of the cortex in the FFA - as measured using magnetic resonance imaging - can predict a person's ability to recognize faces and objects.

"It is the first time we have found a direct relationship between brain structure and visual expertise," said Isabel Gauthier, David K. Wilson Professor of Psychology at Vanderbilt University, who directed the study. "It shows more clearly than ever that this part of the brain is relevant to both face and object recognition abilities."

Surprising twist on cortical thickness

Relationships between cortical thickness and other types of processes, such as motor learning and acquisition of musical skills, have been observed before. The relationship seems relatively straightforward: the process of learning to type faster or play a violin causes the neurons in the relevant area of the cortex to make new connections, which causes the cortex to appear thicker. However, the link between cortical thickness and how well we recognize faces and objects turns out to have a surprising twist.

To establish this surprising relationship, Gauthier and her co-authors, post-doctoral fellow Rankin McGugin and Ana Van Gulick from Carnegie Mellon University, measured the ability of 27 men to identify objects from several different categories divided into two groups: living and non-living. They also tested subjects' ability at recognizing faces.

Using advanced brain-mapping techniques, the researchers were able to pinpoint the exact location of the FFA in each individual and to measure its cortical thickness. When they analyzed the results, the researchers found that the men with thicker FFA cortex performed generally better at identifying non-living objects while those having thinner FFA cortex performed better at identifying faces and living objects.

"It was really a surprise to find that the effects are in opposite directions for faces and non-living objects," said Gauthier. "One possibility that we are exploring is that we acquire expertise for faces much earlier than we learn about cars, and brain development is quite different earlier versus later in life."

There are significant sex differences in facial and object recognition, so the researchers would like to repeat the experiment using women to see if this same relation holds true. They would also like to start with a group of non-experts and then track how the thickness of their FFA cortex changes as they undergo the training process to become experts.

###

This research was supported by National Science Foundation grant SBE-0542013 and National Eye Institute grant R01-EY013441-06A2.

David F Salisbury | Vanderbilt University

More articles from Social Sciences:

nachricht Fixating on faces
26.01.2017 | California Institute of Technology

nachricht Internet use in class tied to lower test scores
16.12.2016 | Michigan State University

All articles from Social Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>