Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn and German researchers help identify neural basis of multitasking

02.09.2015

What makes someone better at switching between different tasks? Looking for the mechanisms behind cognitive flexibility, researchers at the University of Pennsylvania and Germany's Central Institute of Mental Health in Mannheim and Charité University Medicine Berlin have used brain scans to shed new light on this question.

By studying networks of activity in the brain's frontal cortex, a region associated with control over thoughts and actions, the researchers have shown that the degree to which these networks reconfigure themselves while switching from task to task predicts people's cognitive flexibility.


These plots show connection strength between nodes in the brain during the control task (top) and the memory task (bottom). Brain regions are arrayed on both the X and Y axes; the strength of their connection is indicated by the color of the coordinate where they meet.

Credit: Proceedings of the National Academy of Sciences

Experiment participants who performed best while alternating between a memory test and a control test showed the most rearrangement of connections within their frontal cortices as well as the most new connections with other areas of their brains.

A more fundamental understanding of how the brain manages multitasking could lead to better interventions for medical conditions associated with reduced executive function, such as autism, schizophrenia or dementia.

Danielle Bassett, the Skirkanich Assistant Professor of Innovation in Penn's School of Engineering and Applied Science, is senior author on the study. Manheim's Urs Braun and Axel Schäfer were the lead authors. The research also featured work from Andreas Meyer-Lindenberg and Heike Tost of Mannheim, Henrik Walter of Charité, and others.

It was published in the Proceedings of the National Academy of Sciences.

Rather than looking at the role a single region in the brain plays, Bassett and colleagues study the interconnections between the regions as indicated by synchronized activity. Using fMRI, they can measure which parts of the brain are "talking" to one another as study participants perform various tasks. Mapping the way this activity network reconfigures itself provides a more holistic view of how the brain operates.

"We try to understand how dynamic flexibility of brain networks can predict cognitive flexibility, or the ability to switch from task to task," Bassett said. "Rather than being driven by the activity of single brain areas, we believe executive function is a network-level process."

A previous study that Bassett led showed that people who could more quickly "disconnect" their frontal cortices did better on a task that involved pressing keys that corresponded to color-coded notes on a screen. The high level decision-making associated with the frontal cortex's cognitive control wasn't as critical to playing the short sequences of notes, so those who still engaged this part of the brain were essentially overthinking a simple problem.

In the new experiment, lead by Andreas Meyer-Lindenberg of Mannheim, 344 participants alternated between a working memory task designed to engage the frontal cortex and a control task. The easy task involved pressing the corresponding button as a sequence of numbers appeared on a screen one by one. The hard task also involved a sequence of numbers on a screen, but participants had to press the button that corresponded to the number that appeared two places back in the series each time they saw a new one.

Urs Braun and Axel Schäfer, the lead authors on the paper, collaborated with Bassett, who has developed novel tools from network science to distill evolving brain connections. They used these tools to map how participants' brain activities rearranged during each block of the working memory task, each block of the control task and blocks in between where participants switched gears.

"The nodes in the network that are most involved in reconfigurations are cognitive control areas in the frontal cortex," Bassett said. "More flexibility within the frontal cortex meant more accuracy on the memory task, and more consistent connectivity between the frontal cortex and other regions was even more predictive."

While the predictive strength of this reconfiguration suggests that it is only one of several processes involved in successful task switching, it plays a core role.

"It doesn't account for a huge amount variance," Bassett said, "but it suggests that this kind of reconfiguration is a fundamental aspect of cognitive flexibility."

###

Other researchers who contributed to the study include Susanne Erk, Nina Romanczuk-Seiferth and Andreas Heinz of Berlin, and Leila Haddad, Janina I. Schweiger and Oliver Grimm of Mannheim.

The research was supported by the John D. and Catherine T. MacArthur Foundation; Alfred P. Sloan Foundation; Army Research Laboratory through contract W911NF-10-2-0022; Institute for Translational Medicine and Therapeutics at Penn; National Institute of Mental Health through award 2-R01-DC-009209-11; National Science Foundation through awards BCS-1441502 and BCS-1430087; German Federal Ministry of Education and Research through grants 01GS08144, 01GS08147 and 01GS08148; Innovative Medicines Initiative Joint Undertaking though grant agreement 115008; and German Federal Ministry of Education and Research through BMBF 01GQ1102.

Media Contact

Evan Lerner
elerner@upenn.edu
215-573-6604

 @Penn

http://www.upenn.edu/pennnews 

Evan Lerner | EurekAlert!

More articles from Social Sciences:

nachricht Fixating on faces
26.01.2017 | California Institute of Technology

nachricht Internet use in class tied to lower test scores
16.12.2016 | Michigan State University

All articles from Social Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>