Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ORNL Model Explores Location of Future U.S. Population Growth

22.01.2015

Researchers at the Department of Energy’s Oak Ridge National Laboratory have developed a population distribution model that provides unprecedented county-level predictions of where people will live in the U.S. in the coming decades.

Initially developed to assist in the siting of new energy infrastructure, the team’s model has a broad range of implications from urban planning to climate change adaptation. The study is published in the journal Proceedings of the National Academy of Sciences.


ORNL

This 3-D visualization represents projected changes in U.S. population between 2010 and 2050 as predicted by a new Oak Ridge National Laboratory model. Areas seen in red indicate higher levels of population growth, whereas the vertical spikes signify population growth with new land development.

“We do a census every 10 years because those data help us do long-term socioeconomic planning,” said Budhendra Bhaduri, who leads ORNL’s Geographic Information Science and Technology group. “Population projection numbers are important, but many pressing societal needs also require an understanding of where people are going to be. This has always been a challenge; we’ve never had a good method to make future projections spatially explicit.”

The new model builds on years of research in the development of two other ORNL technologies that supply geographical distribution of population: LandScan Global provides one-kilometer resolution for the world and LandScan USA provides 90-meter resolution for the U.S. Incorporating regional variables such as land cover, slope, distances to larger cities, roads and population movement allowed the researchers to refine future population distributions by county.

“We took the U.S. national population total and downscaled to the county level to examine how local population growths vary geographically,” said ORNL’s Jacob McKee, the study’s lead author.

In the study’s projections for 2030 and 2050, the researchers set constraints for each contiguous U.S. county under a business-as-usual scenario based on historical conditions. The team’s analysis of this scenario found that sprawl growth was projected to be most prevalent in the following counties: El Dorado, CA, Maricopa, AZ, and Riverside, CA.

The researchers note that the current study presents one of many potential outcomes, and the model can be adjusted to consider additional variables and scenarios. For instance, extreme weather events or local investments such as new industries can drastically affect where people move, but these factors are impossible to predict decades in advance.

“Our research is a demonstration of a model that can be tailored to specific scenarios to measure population in different ways,” McKee said. “This is by no means a definitive answer of what’s going to happen.”

The researchers hope their model will aid in long-term planning efforts in a wide variety of fields.

“Changes in climate-induced disaster patterns, epidemiological events and infrastructure planning underscore the need to quantify and map the current population,” Bhaduri said. “Predicting the distribution of future populations allows for improved adaptation and mitigation strategies.”

This research, conducted as part of ORNL’s Urban Dynamics Institute, was funded by DOE’s Office of Nuclear Energy. The researchers anticipate making the datasets accessible to the broader user community later this year. The article’s authors include ORNL’s Jacob McKee, Amy Rose, Eddie Bright, Timmy Huynh, and Budhendra Bhaduri.

UT-Battelle manages ORNL for the Department of Energy’s Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit http://science.energy.gov/

###

Image: http://www.ornl.gov/Image%20Library/Main%20Nav/ORNL/News/News%20Releases/2015/population_map_highres.jpg

Caption: This 3-D visualization represents projected changes in U.S. population between 2010 and 2050 as predicted by a new Oak Ridge National Laboratory model. Areas seen in red indicate higher levels of population growth, whereas the vertical spikes signify population growth with new land development.

NOTE TO EDITORS: You may read other press releases from Oak Ridge National Laboratory or learn more about the lab at http://www.ornl.gov/news .

Contact Information
MEDIA CONTACT: Morgan McCorkle
Oak Ridge National Laboratory
Communications and Media Relations
(865) 574-7308; mccorkleml@ornl.gov

Morgan McCorkle | newswise

More articles from Social Sciences:

nachricht Fixating on faces
26.01.2017 | California Institute of Technology

nachricht Internet use in class tied to lower test scores
16.12.2016 | Michigan State University

All articles from Social Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>