Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Just add water? New MRI technique shows what drinking water does to your appetite, stomach and brain

12.07.2016

Stomach MRI images combined with functional fMRI of the brain activity have provided scientists new insight into how the brain listens to the stomach during eating

Stomach MRI images combined with functional fMRI of the brain activity have provided scientists new insight into how the brain listens to the stomach during eating. Research from Wageningen University in the Netherlands shows - for the first time - real time data of the brain, the stomach, and people's feelings of satiety measured simultaneously during a meal, in a study to be reported this week at the annual meeting of the Society for the Study of Ingestive Behavior, held in Porto, Portugal. The researchers collected data from 19 participants during two separate sessions with different consumption procedures and found that a simple change like drinking more water can alter messages from the stomach interpreted as fullness by the brain. This new research approach can be used to investigate the interplay between satiety feelings, volume of the stomach and activity in the brain.


Activation in the insula is increased when the stomach is distended more.

Credit: Authors: G CAMPS, R VEIT, M MARS, C DE GRAAF, P SMEETS

In the experiment, participants drank a milk-shake on an empty stomach, which was followed by a small (50 mL) or large glass of water (350 mL). MRI images were used to see how the different amounts of water affected stretching of the stomach: the large glass of water doubled the stomach content compared to the small glass. Together with this larger volume subjects reported to have less hunger and felt fuller.

This novel approach - combining information obtained simultaneously from MRI images of the stomach, feelings reported by the subjects, and brain scans - can offer new insights which would otherwise have been unknown, for example that activation in a brain area called the mid-temporal gyrus seems is in some way influenced by the increased water load in this experiment. The Wageningen University scientists developed the combined MRI method as part of the European Nudge-it research project, which seeks to discover simple changes that promote healthier eating. They will use it to search for a brain signature that leads people to decide to stop eating, to determine how strategies like water with a meal can be effective at feeling fuller sooner.

"Combining these types of measurements is difficult, because MRI scanners are usually set-up to perform only one type of scan. We've been able to very quickly switch the scanner from one functionality to another to do this type of research" says Guido Camps, lead author of the study. "In conclusion, we've found that simply adding water increases stomach distension, curbs appetite in the short term and increases regional brain activity."

###

Figure 1.
Activation in the insula is increased when the stomach is distended more.

Figure 2.
The same subject with either the small (left) or large volume of water (right) in the stomach (delineated in red).

Research: "Just add water: how water affects gastric distension, appetite and brain activity"

Authors:
G CAMPS, R VEIT, M MARS, C DE GRAAF, P SMEETS

Melissa Szkodzinska | EurekAlert!

Further reports about: MRI MRI images MRI technique drinking water glass stomach

More articles from Social Sciences:

nachricht Sibling differences: Later-borns choose less prestigious programs at university
14.11.2017 | Max-Planck-Institut für demografische Forschung

nachricht Visual intelligence is not the same as IQ
09.11.2017 | Vanderbilt University

All articles from Social Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>