Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Just add water? New MRI technique shows what drinking water does to your appetite, stomach and brain


Stomach MRI images combined with functional fMRI of the brain activity have provided scientists new insight into how the brain listens to the stomach during eating

Stomach MRI images combined with functional fMRI of the brain activity have provided scientists new insight into how the brain listens to the stomach during eating. Research from Wageningen University in the Netherlands shows - for the first time - real time data of the brain, the stomach, and people's feelings of satiety measured simultaneously during a meal, in a study to be reported this week at the annual meeting of the Society for the Study of Ingestive Behavior, held in Porto, Portugal. The researchers collected data from 19 participants during two separate sessions with different consumption procedures and found that a simple change like drinking more water can alter messages from the stomach interpreted as fullness by the brain. This new research approach can be used to investigate the interplay between satiety feelings, volume of the stomach and activity in the brain.

Activation in the insula is increased when the stomach is distended more.


In the experiment, participants drank a milk-shake on an empty stomach, which was followed by a small (50 mL) or large glass of water (350 mL). MRI images were used to see how the different amounts of water affected stretching of the stomach: the large glass of water doubled the stomach content compared to the small glass. Together with this larger volume subjects reported to have less hunger and felt fuller.

This novel approach - combining information obtained simultaneously from MRI images of the stomach, feelings reported by the subjects, and brain scans - can offer new insights which would otherwise have been unknown, for example that activation in a brain area called the mid-temporal gyrus seems is in some way influenced by the increased water load in this experiment. The Wageningen University scientists developed the combined MRI method as part of the European Nudge-it research project, which seeks to discover simple changes that promote healthier eating. They will use it to search for a brain signature that leads people to decide to stop eating, to determine how strategies like water with a meal can be effective at feeling fuller sooner.

"Combining these types of measurements is difficult, because MRI scanners are usually set-up to perform only one type of scan. We've been able to very quickly switch the scanner from one functionality to another to do this type of research" says Guido Camps, lead author of the study. "In conclusion, we've found that simply adding water increases stomach distension, curbs appetite in the short term and increases regional brain activity."


Figure 1.
Activation in the insula is increased when the stomach is distended more.

Figure 2.
The same subject with either the small (left) or large volume of water (right) in the stomach (delineated in red).

Research: "Just add water: how water affects gastric distension, appetite and brain activity"


Melissa Szkodzinska | EurekAlert!

Further reports about: MRI MRI images MRI technique drinking water glass stomach

More articles from Social Sciences:

nachricht New population data provide insight on aging, migration
31.08.2016 | International Institute for Applied Systems Analysis (IIASA)

nachricht PRB projects world population rising 33 percent by 2050 to nearly 10 billion
25.08.2016 | Population Reference Bureau

All articles from Social Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>