Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Finding out What the Big Bang and Ink Jets Have in Common

04.06.2008
ESF workshop tackles the mathematics of singularities

It often turns out there is more to commonplace everyday events than meets the eye. The folding of paper, or fall of water droplets from a tap, are two such events, both of which involve the creation of singularities requiring sophisticated mathematical techniques to describe, analyse and predict.

On the positive side, there is much in common between many such singular events across the whole range of scales, from microscopic interactions to the very formation of the universe itself during the Big Bang. In the past these seemingly unconnected events involving singularities have tended to be studied in isolation by different scientists with relatively little interaction or exchange of ideas between them.

Singularities occur at a point of cut off, or sudden change, within a physical system, as in formation of cracks, lightning strikes, creation of ink drops in printers, and the breaking of a cup when it drops. Improved understanding of the underlying mathematics would have many benefits, for example in making materials of all kinds that are more resistant to cracking or breaking. A recent workshop organised by the European Science Foundation (ESF) represented one of the first attempts to unify the field of singularities by bringing together experts in the different fields of application from astronomy to nanoscience, to develop common mathematical approaches.

"Singularities represent a subject that cuts across disciplines and specializations, such as experimental physics, theoretical physics, and rigorous mathematical proofs," noted the workshop's convenor Jens Eggers. "This workshop very much reflected this fact, as we had speakers from very different backgrounds."

The workshop confirmed that most if not all singular events in the universe, ranging from microscopic cracks to the Big Bang, share one important property known as self-similarity. This means that under magnification the event looks almost the same. For example a crack in a piece of plastic exhibits the same jagged structure when magnified say 100 times. This enables common mathematical approaches to be applied.

However it is also true that the "devil lies in the detail" when it comes to comparing different types of singularity. In other words different systems might have some common features such as self-similarity, but also unique aspects that require specialised study. One aim of the workshop therefore was to identify the common methods that could be applied as a foundation for more detailed specific study of a particular type of singularity.

This was reflected in the wide range of systems discussed. One such system, dealing with cracks in structures or rock formations, was presented by Jay Fineberg from the Hebrew University in Jerusalem. He talked about new experiments involving gels, allowing the structure of the crack to be determined in great detail down to very small microscopic dimensions, yielding some unexpected findings. "In particular, the structure of a crack is often more complicated than anticipated. Instead of one single crack path, the crack splits and has many small side branches, which appear to have complicated, if not fractal, structure," said Eggers. Fractal structure here means much the same as self-similarity, involving a geometrical pattern that looks unchanged under magnification or reduction.

Another example of everyday relevance concerned the singularities of crumpling in paper, presented by Tom Witten from the James Franck Institute in Chicago. A crumpled piece of paper comprises many ridges and tips, which defy easy analysis. As Eggers noted, there are many unanswered questions even in describing each individual cone-shaped tip. Yet understanding the underlying mathematics would not just help understand what happens when we crumple up a piece of paper to throw away, but also other physical systems involving ridges and tips, such as the folding of proteins during their manufacture in biological cells.

One question might be what the connection is between singularity theory, and catastrophe theory, which came to prominence in the 1970s, initially developed by French mathematician René Thom and then expanded by UK mathematician Erik Zeeman. In fact catastrophe theory is a sub-branch of singularity theory, dealing with events within physical space-time, such as collisions between wave fronts, as Eggers pointed out. "In that case, a problem that takes place in all of space can be reduced to a problem that takes place along certain lines (caustics), which can be classified according to catastrophe theory," said Eggers. However this simplification cannot be applied to all singularity problems.

The workshop was though highly successful in investigating the common features that do pertain across different fields of singularity, and prepared the ground for further research programmes with greater cross-pollination of ideas than has occurred previously.

Thomas Lau | alfa
Further information:
http://www.esf.org/activities/exploratory-workshops/physical-and-engineering-sciences-pesc/workshops-detail.html?ew=6627

More articles from Seminars Workshops:

nachricht New Materials – New Test Requirements
17.05.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Virtual Worlds: Research Trends in Mobile 3D Data Collection
30.11.2016 | Fraunhofer IPM

All articles from Seminars Workshops >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>