Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Finding out What the Big Bang and Ink Jets Have in Common

04.06.2008
ESF workshop tackles the mathematics of singularities

It often turns out there is more to commonplace everyday events than meets the eye. The folding of paper, or fall of water droplets from a tap, are two such events, both of which involve the creation of singularities requiring sophisticated mathematical techniques to describe, analyse and predict.

On the positive side, there is much in common between many such singular events across the whole range of scales, from microscopic interactions to the very formation of the universe itself during the Big Bang. In the past these seemingly unconnected events involving singularities have tended to be studied in isolation by different scientists with relatively little interaction or exchange of ideas between them.

Singularities occur at a point of cut off, or sudden change, within a physical system, as in formation of cracks, lightning strikes, creation of ink drops in printers, and the breaking of a cup when it drops. Improved understanding of the underlying mathematics would have many benefits, for example in making materials of all kinds that are more resistant to cracking or breaking. A recent workshop organised by the European Science Foundation (ESF) represented one of the first attempts to unify the field of singularities by bringing together experts in the different fields of application from astronomy to nanoscience, to develop common mathematical approaches.

"Singularities represent a subject that cuts across disciplines and specializations, such as experimental physics, theoretical physics, and rigorous mathematical proofs," noted the workshop's convenor Jens Eggers. "This workshop very much reflected this fact, as we had speakers from very different backgrounds."

The workshop confirmed that most if not all singular events in the universe, ranging from microscopic cracks to the Big Bang, share one important property known as self-similarity. This means that under magnification the event looks almost the same. For example a crack in a piece of plastic exhibits the same jagged structure when magnified say 100 times. This enables common mathematical approaches to be applied.

However it is also true that the "devil lies in the detail" when it comes to comparing different types of singularity. In other words different systems might have some common features such as self-similarity, but also unique aspects that require specialised study. One aim of the workshop therefore was to identify the common methods that could be applied as a foundation for more detailed specific study of a particular type of singularity.

This was reflected in the wide range of systems discussed. One such system, dealing with cracks in structures or rock formations, was presented by Jay Fineberg from the Hebrew University in Jerusalem. He talked about new experiments involving gels, allowing the structure of the crack to be determined in great detail down to very small microscopic dimensions, yielding some unexpected findings. "In particular, the structure of a crack is often more complicated than anticipated. Instead of one single crack path, the crack splits and has many small side branches, which appear to have complicated, if not fractal, structure," said Eggers. Fractal structure here means much the same as self-similarity, involving a geometrical pattern that looks unchanged under magnification or reduction.

Another example of everyday relevance concerned the singularities of crumpling in paper, presented by Tom Witten from the James Franck Institute in Chicago. A crumpled piece of paper comprises many ridges and tips, which defy easy analysis. As Eggers noted, there are many unanswered questions even in describing each individual cone-shaped tip. Yet understanding the underlying mathematics would not just help understand what happens when we crumple up a piece of paper to throw away, but also other physical systems involving ridges and tips, such as the folding of proteins during their manufacture in biological cells.

One question might be what the connection is between singularity theory, and catastrophe theory, which came to prominence in the 1970s, initially developed by French mathematician René Thom and then expanded by UK mathematician Erik Zeeman. In fact catastrophe theory is a sub-branch of singularity theory, dealing with events within physical space-time, such as collisions between wave fronts, as Eggers pointed out. "In that case, a problem that takes place in all of space can be reduced to a problem that takes place along certain lines (caustics), which can be classified according to catastrophe theory," said Eggers. However this simplification cannot be applied to all singularity problems.

The workshop was though highly successful in investigating the common features that do pertain across different fields of singularity, and prepared the ground for further research programmes with greater cross-pollination of ideas than has occurred previously.

Thomas Lau | alfa
Further information:
http://www.esf.org/activities/exploratory-workshops/physical-and-engineering-sciences-pesc/workshops-detail.html?ew=6627

More articles from Seminars Workshops:

nachricht Climate Fluctuations & Non-equilibrium Statistical Mechanics: An Interdisciplinary Dialog
29.06.2017 | Max-Planck-Institut für Physik komplexer Systeme

nachricht Blood flow under magnetic magnifier
21.06.2017 | Fraunhofer MEVIS - Institut für Bildgestützte Medizin

All articles from Seminars Workshops >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>