Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Master’s programme: University of Kaiserslautern educates experts in quantum technology

15.03.2017

Lasers, microprocessors, smartphones – they all work thanks to quantum mechanics. New technologies come from new understanding of quantum phenomena, and new understanding comes from research; tomorrow’s new quantum technologies will come from learning today. This winter semester, the University of Kaiserslautern is introducing the English-language Master’s programme in ‘Advanced Quantum Physics’, for students who want to prepare themselves for radical innovation by mastering the essential foundations of the quantum world. The deadline for applications from abroad is April 30th. For applications from within Germany the deadline is August 21st.

In August last year a Chinese team sent the first quantum satellite into space. Its purpose: to test a communications channel whose security from interception is guaranteed by the fundamental laws of nature. This is how rapidly quantum research is now showing that the strange possibilities of quantum mechanics can have enormously practical applications.


The Master’s programme includes important techniques that are necessary for researching the quantum world.

Credit: University of Kaiserslautern

“The European Commission is investing a billion euros to apply quantum research,” notes Professor Dr Artur Widera, whose lab at the University of Kaiserslautern features quantum systems at near absolute zero. “This is not even just about radical new kinds of computers or secure communication networks. It’s also about new kinds of sensors for medical imaging, quantum simulators for materials research—a whole wave of technology rising up now.”

To develop these new technologies, there have to be experts who deeply understand the world of quantum particles, spins, and photons. The University of Kaiserslautern is addressing this need: it is introducing the four-semester Master’s programme in ‘Advanced Quantum Physics’ for the 2016/17 winter semester. This is one of the first study programmes in Germany to focus on quantum research and quantum technology.

“The study programme involves lots of practical work. Students can even work in the laboratory independently. Our teaching will include the important techniques that are necessary for researching the quantum world,” Widera continues. The programme will encompass topics such as photonics, solid-state physics, the processing of quantum information and the microphysical foundations of materials science. Theoretical quantum physics will also be covered. “Students will learn how to describe complex quantum systems and effects. This theoretical work forms an important part of all our research,” Widera adds.

During the Master’s programme, students will have the opportunity to become involved in the research projects of the individual working groups as part of a placement or as a research assistant. All lectures and seminars will take place in English. The Master’s thesis will be prepared in one of the working groups.

Quantum research represents a key field in its own right at the University of Kaiserslautern: researchers are closely examining quantum phenomena in four special research areas altogether. For instance, Professor Dr Michael Fleischhauer and his team are working on connecting quantum systems with their environment. These kinds of systems have so far been highly sensitive and unstable; they can only be maintained under certain conditions. Now, however, researchers are working on ways to use the environment to enhance quantum effects instead of suppressing them.

The European Union is also promoting research in this area. Professor Widera received an ERC Starting Grant – one of the highest awards granted by the EU – for his work on the quantum properties of superfluids. Using quantum models to simulate physics within the quantum world, Widera captures single atoms in a cage made from ultracold gas clouds and laser light, in order to discover mechanisms of superconductivity that have so far eluded comprehension. His colleague Professor Dr Burkhard Hillebrands has likewise been awarded an ERC Advanced Grant for his work with quantum spin excitations known as magnons, which in the future could enhance energy efficiency in data storage and processing.

These and many other Kaiserslautern researchers collaborate in the State Research Center for Optics and Material Sciences (OPTIMAS), which brings the fields of physics, chemistry, biology and material science together to investigate interactions between spin, light and matter. Education in advanced quantum physics at Kaiserslautern thus brings Master’s students directly into world-leading physics research with strong connections to other disciplines as well.

Those interested in applying to the Master’s programme should have completed a Bachelor’s programme that corresponds with the Bachelor’s course content in physics at the University of Kaiserslautern.

Prospective students abroad must apply by April 30th, whereas those in Germany have until August 31st.

Application for prospective students abroad:
University of Kaiserslautern
Department of International Affairs: ISGS
Gottlieb Daimler Str. 47
D 67663 Kaiserslautern
Germany

Further information is available here: https://www.physik.uni-kl.de/quantum-master

For questions, please contact:

Prof Dr Artur Widera
Subject area: the quantum physics of single atoms and ultracold quantum gases
Tel.: 0631 205-4130
Email: widera[at]physik.uni-kl.de

Katrin Müller | Technische Universität Kaiserslautern

More articles from Science Education:

nachricht Classroom in Stuttgart with Li-Fi of Fraunhofer HHI opened
03.11.2017 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

nachricht Starting school boosts development
11.05.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

Im Focus: Support Free with “TwoCure” – Innovation in Resin-Based 3D Printing

The Fraunhofer Institute for Laser Technology ILT and Rapid Shape GmbH are working together to further develop resin-based 3D printing. The new “TwoCure” process requires no support structures and is significantly more efficient and productive than conventional 3D printing techniques for plastic components. Experts from Fraunhofer ILT will be presenting the state-funded joint development that makes use of the interaction of light and cold in forming the components at formnext 2017 from November 14 to 17 in Frankfurt am Main.

Much like stereolithography, one of the best-known processes for printing 3D plastic components works using photolithographic light exposure that causes liquid...

Im Focus: Researchers develop chip-scale optical abacus

A team of researchers led by Prof. Wolfram Pernice from the Institute of Physics at Münster University has developed a miniature abacus on a microchip which calculates using light signals. With it they are paving the way to the development of new types of computer in which, as in the human brain, the computing and storage functions are combined in one element.

Researchers at the universities of Münster, Exeter and Oxford have developed a miniature “abacus” which can be used for calculating with light signals. With it...

Im Focus: Lightwave controlled nanoscale electron acceleration sets the pace

Extremely short electron bunches are key to many new applications including ultrafast electron microscopy and table-top free-electron lasers. A german team of physicists from Rostock University, the Max Born Institute in Berlin, the Ludwig-Maxmilians-Universität Munich, and the Max Planck Institute of Quantum Optics in Garching has now shown how electrons can be accelerated in an extreme and well-controlled way with laser light, while crossing a silver particle of just a few nanometers.

Of particular importance for potential applications is the ability to manipulate the acceleration process, known as a swing-by maneuver from space travel, with...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

 
Latest News

Quantum computing on the move

06.11.2017 | Information Technology

Fast Personalized Therapeutic Choices Thanks to the Light-Based Sorting of Biomolecules and Cells

06.11.2017 | Life Sciences

Dendritic fibrous nanosilica: all-in-one nanomaterial for energy, environment and health

06.11.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>