Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Finger on the Pulse of Innovation – Worldwide

09.12.2015

New trends can emerge anywhere in the world, but they generally arise in places where clever people get together. To tap into this local potential, Siemens has research facilities at over 170 locations worldwide. Corporate Technology (CT), the central research department at Siemens, is responsible for defining key R&D priorities.

The 21st century is a highly dynamic period. With the march of globalization has come a steady increase in worldwide competition. The balance of power in the world of research and development (R&D) is also drifting away from the erstwhile industrial nations and toward the emerging economies.


A glimpse into a laser chamber, where a 3D object is being created from metal particles.

This relocation offers a host of opportunities for companies to shift and consolidate their positions in a rapidly changing global market.

For a company as global as Siemens, it is crucial to have a finger on the pulse of the most important markets. This is true not only of sales but also of research. “People set new trends. And to work with these trendsetters, you need to be there on the ground, where these people live,” explains Dr. Norbert Gaus, Director of the Research and Technology Center at Siemens Corporate Technology (CT). Siemens currently has some 30,000 employees working in R&D at over 170 locations worldwide.

In particular, Corporate Technology (CT) – Siemens’ central research department – sets the course for future innovations and even for future areas of business. All in all, CT operates 21 R&D centers around the world, with a total of 7,800 researchers, developers, and other experts. Locations in the U.S., Germany, India, and China are responsible for key priorities.

Additive Manufacturing – A Global Research Field with a Big Future

At Siemens’ Princeton, New Jersey R&D campus, which is based just outside the idyllic university town of the same name, around 200 researchers cover a broad range of subjects. Key topics are digital technology and industrial automation. These cover important aspects of additive manufacturing, also known as 3D printing.

It’s for this reason that the rooms occupied by the research group in the Additive Manufacturing Engineering Technology Field look a little like a huge toy box, strewn with lots of colorful objects produced by a simple 3D printer. Whether toy-like figures made of plastic or miniature models of turbine blades, all of the objects are responses to a basic question:

How can objects be designed on a computer in such a way that they can be optimally produced by additive manufacturing? With this technology, established design rules and familiar material properties no longer apply. Specifically, specialists in Princeton are working on design methods that will then find their way into Siemens products such as PLM software for computer-aided design and engineering.

These programs make it possible to plan and implement production processes partly along conventional lines and partly on the basis of additive manufacturing.

Additive manufacturing is also a topic of interest for CT researchers in Berlin. Unlike Princeton, however, the focus here is less on the question of the printed object’s design and much more on the choice of materials, their properties, and the development of manufacturing techniques. Another difference is that here the trial models tend to be made of metal rather than the plastic frequently used in Princeton.

Depending on the actual process used, this metal might first be pulverized and then fused layer by layer – i.e. added, hence the name of this technology – by means of a process known as selective laser melting. The goal of this research is to make it possible in the near future to simply “print out” spare parts for, say, a gas turbine and fit them directly, thereby eliminating weeks of waiting for delivery.

Sensors: A Data Source for the Web of Systems

Siemens Corporate Technology’s largest location is on the outskirts of Munich. Here, where some 850 scientists work, facilities include the labs of the Sensor Technology Field, which focuses on new sensor systems with a vast range of applications. Sensors are a source of data in the industrial environment and are therefore indispensable for the digital evolution of industry.

This is true of all the businesses at Siemens – ranging from facility automation to the monitoring and control of complex facilities and infrastructures, as well as mobility solutions. Sensor systems provide the basis for what is called a web of systems, in which devices and systems are networked with one another and are endowed with a degree of intelligence by means of software applications.

At the same time, they are also vital for data analytics applications, which learn to control facilities more and more efficiently on the basis of a steady feed of data from sensors. Here too, CT experts are working in close collaboration with colleagues from the business units and other CT locations worldwide.

“At Siemens, research should lead to innovative products; that’s the point where research turns into innovation,” Gaus explains. “Our research in the areas of additive manufacturing and sensor systems provides two good examples of how research groups from our CT locations working in different technology fields work closely with business units worldwide.”

This is what ensures that development work leads to successful innovations. And this is also why Siemens has research groups not only in its major countries for product development, such as Germany, China, India, and the U.S., but also in locations where key developments can be advanced together with the customer. For example, in Vienna, Austria, which is home to Aspern, an entirely new “smart city,” innovative infrastructure technologies are now undergoing trials in close consultation with the client – and, thanks to the local CT presence, improved on the spot in cooperation with company divisions.

CT in India and China: Software that Meets the Needs of Emerging Markets

Software is one of the main focus areas for CT employees in India – or, more precisely, for CT’s Development Services software house. Over 3,000 employees develop software in Bangalore for 30 areas of business – not only for the Indian market but also for markets worldwide ((link to India article here)). Meanwhile, the 400 employees at CT’s locations in Beijing, Shanghai, and Nanjing are working on a range of technologies that are used in Siemens products. Here, once again, the strategy is to team up with the business units and to work as closely as possible with customers so as to act as an interface between customer requirements, on the one hand, and what is technically and economically feasible, on the other. “China is a huge market with very precise product requirements,” Gaus explains.

Here, products must be easy to use, highly robust, and priced at a level that corresponds to the general price level in China and similar markets. CT employees in China are involved in all of the most important research projects so as to ensure that these requirements are observed. Results confirm the strength of this strategy. Knowledge gathered in the Chinese market has already been used in solutions for other markets such as India and Brazil. These solutions include CT scanners developed by Siemens researchers in China, which are now being sold in those countries. In addition, Siemens plans to open its very own Digital Innovation Center in China in 2016. This R&D facility will concentrate on cross-divisional projects focusing on new digital solutions for both the Chinese market and markets further afield where the “Chinese way to new technology” opens up new options.


Whether in the U.S., Germany, India, or China, the R&D activities described above represent only a few of the many examples where innovation at Siemens is a truly global affair and is being driven by international research teams. In this way the company can profit from the concentrated know-how of its employees on the ground. What’s more, thanks to its international configuration, Siemens also gains firsthand knowledge about different market requirements around the world. And for a company with the global presence of Siemens, that kind of knowledge is invaluable.


Katrin Nikolaus / Sebastian Webel

Redaktion
Sebastian Webel
Dr. Norbert Aschenbrenner
Dr. Johannes von Karczewski


Kontakt für Journalisten
Florian Martini
Tel.: +49 (89) 636-33446

www.siemens.com

Katrin Nikolaus / Sebastian Webel | Siemens Pictures of the Future

Further reports about: CT Chinese market Innovation Manufacturing Siemens Software innovations plastic

More articles from Science Education:

nachricht Starting school boosts development
11.05.2017 | Max-Planck-Institut für Bildungsforschung

nachricht New Master’s programme: University of Kaiserslautern educates experts in quantum technology
15.03.2017 | Technische Universität Kaiserslautern

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

Im Focus: Austrian and Chinese Academies of Sciences successfully conducted first Inter-Continental Quantum Video Call

The two Academy presidents Chunli Bai and Anton Zeilinger tested quantum encrypted communication between Beijing and Vienna in a live-experiment. The quantum key was transmitted via the Chinese quantum satellite Micius.

From quantum cryptography to the quantum internet – fundamental research into the world of the quantum promises several new tech opportunities in the future....

Im Focus: Entangling photons from a quantum dot in the telecom C-band

A research team of the institute of semiconductor optics and functional interfaces (IHFG) of the University of Stuttgart experimentally verified the generation of polarization-entangled photon pairs in the emission wavelength range of the telecom C-band. The generation of entangled photons, i.e. a non-classical phenomenon which “bounds” the states of two different entities, is a cornerstone for the realization of quantum networks.

Quantum dots are one of the most prominent and promising candidates as non-classical light sources applied in quantum information technology. They have been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

Biodegradable electronics

13.10.2017 | Life Sciences

Usutu virus is back – not only in blackbirds but also in humans

13.10.2017 | Life Sciences

Rice U. lab surprised by ultraflat magnets

12.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>