Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Finger on the Pulse of Innovation – Worldwide

09.12.2015

New trends can emerge anywhere in the world, but they generally arise in places where clever people get together. To tap into this local potential, Siemens has research facilities at over 170 locations worldwide. Corporate Technology (CT), the central research department at Siemens, is responsible for defining key R&D priorities.

The 21st century is a highly dynamic period. With the march of globalization has come a steady increase in worldwide competition. The balance of power in the world of research and development (R&D) is also drifting away from the erstwhile industrial nations and toward the emerging economies.


A glimpse into a laser chamber, where a 3D object is being created from metal particles.

This relocation offers a host of opportunities for companies to shift and consolidate their positions in a rapidly changing global market.

For a company as global as Siemens, it is crucial to have a finger on the pulse of the most important markets. This is true not only of sales but also of research. “People set new trends. And to work with these trendsetters, you need to be there on the ground, where these people live,” explains Dr. Norbert Gaus, Director of the Research and Technology Center at Siemens Corporate Technology (CT). Siemens currently has some 30,000 employees working in R&D at over 170 locations worldwide.

In particular, Corporate Technology (CT) – Siemens’ central research department – sets the course for future innovations and even for future areas of business. All in all, CT operates 21 R&D centers around the world, with a total of 7,800 researchers, developers, and other experts. Locations in the U.S., Germany, India, and China are responsible for key priorities.

Additive Manufacturing – A Global Research Field with a Big Future

At Siemens’ Princeton, New Jersey R&D campus, which is based just outside the idyllic university town of the same name, around 200 researchers cover a broad range of subjects. Key topics are digital technology and industrial automation. These cover important aspects of additive manufacturing, also known as 3D printing.

It’s for this reason that the rooms occupied by the research group in the Additive Manufacturing Engineering Technology Field look a little like a huge toy box, strewn with lots of colorful objects produced by a simple 3D printer. Whether toy-like figures made of plastic or miniature models of turbine blades, all of the objects are responses to a basic question:

How can objects be designed on a computer in such a way that they can be optimally produced by additive manufacturing? With this technology, established design rules and familiar material properties no longer apply. Specifically, specialists in Princeton are working on design methods that will then find their way into Siemens products such as PLM software for computer-aided design and engineering.

These programs make it possible to plan and implement production processes partly along conventional lines and partly on the basis of additive manufacturing.

Additive manufacturing is also a topic of interest for CT researchers in Berlin. Unlike Princeton, however, the focus here is less on the question of the printed object’s design and much more on the choice of materials, their properties, and the development of manufacturing techniques. Another difference is that here the trial models tend to be made of metal rather than the plastic frequently used in Princeton.

Depending on the actual process used, this metal might first be pulverized and then fused layer by layer – i.e. added, hence the name of this technology – by means of a process known as selective laser melting. The goal of this research is to make it possible in the near future to simply “print out” spare parts for, say, a gas turbine and fit them directly, thereby eliminating weeks of waiting for delivery.

Sensors: A Data Source for the Web of Systems

Siemens Corporate Technology’s largest location is on the outskirts of Munich. Here, where some 850 scientists work, facilities include the labs of the Sensor Technology Field, which focuses on new sensor systems with a vast range of applications. Sensors are a source of data in the industrial environment and are therefore indispensable for the digital evolution of industry.

This is true of all the businesses at Siemens – ranging from facility automation to the monitoring and control of complex facilities and infrastructures, as well as mobility solutions. Sensor systems provide the basis for what is called a web of systems, in which devices and systems are networked with one another and are endowed with a degree of intelligence by means of software applications.

At the same time, they are also vital for data analytics applications, which learn to control facilities more and more efficiently on the basis of a steady feed of data from sensors. Here too, CT experts are working in close collaboration with colleagues from the business units and other CT locations worldwide.

“At Siemens, research should lead to innovative products; that’s the point where research turns into innovation,” Gaus explains. “Our research in the areas of additive manufacturing and sensor systems provides two good examples of how research groups from our CT locations working in different technology fields work closely with business units worldwide.”

This is what ensures that development work leads to successful innovations. And this is also why Siemens has research groups not only in its major countries for product development, such as Germany, China, India, and the U.S., but also in locations where key developments can be advanced together with the customer. For example, in Vienna, Austria, which is home to Aspern, an entirely new “smart city,” innovative infrastructure technologies are now undergoing trials in close consultation with the client – and, thanks to the local CT presence, improved on the spot in cooperation with company divisions.

CT in India and China: Software that Meets the Needs of Emerging Markets

Software is one of the main focus areas for CT employees in India – or, more precisely, for CT’s Development Services software house. Over 3,000 employees develop software in Bangalore for 30 areas of business – not only for the Indian market but also for markets worldwide ((link to India article here)). Meanwhile, the 400 employees at CT’s locations in Beijing, Shanghai, and Nanjing are working on a range of technologies that are used in Siemens products. Here, once again, the strategy is to team up with the business units and to work as closely as possible with customers so as to act as an interface between customer requirements, on the one hand, and what is technically and economically feasible, on the other. “China is a huge market with very precise product requirements,” Gaus explains.

Here, products must be easy to use, highly robust, and priced at a level that corresponds to the general price level in China and similar markets. CT employees in China are involved in all of the most important research projects so as to ensure that these requirements are observed. Results confirm the strength of this strategy. Knowledge gathered in the Chinese market has already been used in solutions for other markets such as India and Brazil. These solutions include CT scanners developed by Siemens researchers in China, which are now being sold in those countries. In addition, Siemens plans to open its very own Digital Innovation Center in China in 2016. This R&D facility will concentrate on cross-divisional projects focusing on new digital solutions for both the Chinese market and markets further afield where the “Chinese way to new technology” opens up new options.


Whether in the U.S., Germany, India, or China, the R&D activities described above represent only a few of the many examples where innovation at Siemens is a truly global affair and is being driven by international research teams. In this way the company can profit from the concentrated know-how of its employees on the ground. What’s more, thanks to its international configuration, Siemens also gains firsthand knowledge about different market requirements around the world. And for a company with the global presence of Siemens, that kind of knowledge is invaluable.


Katrin Nikolaus / Sebastian Webel

Redaktion
Sebastian Webel
Dr. Norbert Aschenbrenner
Dr. Johannes von Karczewski


Kontakt für Journalisten
Florian Martini
Tel.: +49 (89) 636-33446

www.siemens.com

Katrin Nikolaus / Sebastian Webel | Siemens Pictures of the Future

Further reports about: CT Chinese market Innovation Manufacturing Siemens Software innovations plastic

More articles from Science Education:

nachricht Decision-making research in children: Rules of thumb are learned with time
19.10.2016 | Max-Planck-Institut für Bildungsforschung

nachricht Young people discover the "Learning Center"
20.09.2016 | Research Center Pharmaceutical Engineering GmbH

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>