Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spray drying the precision particle under the virtual magnifying glass

06.05.2015

Spray drying is a common manufacturing process, used in the production of ceramic granulate for technical components or dental prostheses as well as dissolvable medicinal substances, food additives and in the processing of milk into powder. Using computer simulation methodology developed by scientists at the Fraunhofer Institute for Mechanics of Materials IWM, a more comprehensible understanding can now be gained of the behavior of particles in solvent during the spray drying process. This allows powder and granulate manufacturers to specifically adjust the properties of their products while reducing waste.

Previously, it was unusual for granule and powder producers to use granulation simulations to improve their products. For new product development or process optimization, manufacturers relied on trial and error.


Spray dried granules: Depending on the choice of process and suspension parameters, the simulation can generate dense (left) or porous or hollow (right) granulate.

© Fraunhofer Institute for Mechanics of Materials IWM

Spray drying is, however, influenced by many process parameters as well as the material behavior of the fluid and dissolved particles. Experts at the Fraunhofer IWM have now developed a new simulation method: coupled particle flow simulation shows the interaction between the particles and suspension. "The flow of the various particle sizes as well as their location in the liquid are incorporated“, explains Fraunhofer IWM simulation expert Thomas Breinlinger.

"For example, we can detect if there is an increase of smaller particles outside while the larger particles are more likely to be found inside or how they move in the liquid throughout the process.“ This new numerical simulation model combines long-established Fraunhofer IWM particle flow simulations, i.e., CFD (Computational Fluid Dynamics) and DEM (Discrete Element Method).

The spray drying simulation technology is already successfully being deployed with ceramic granules, but can also be implemented for powder and granulate in the pharmaceutical, biotechnology, nanotechnology and food industries. Additionally, manufacturers of drying systems benefit from the simulation by gaining a better grasp of the origin and structure of the granular materials.

Increased economic efficiency through simulations and modeling

Using the new simulation method, granulate manufacturers better understand how their product is created and what most affects granule quality. As a result, it becomes clear which of the modeled flow parameters are actually relevant for improving product quality or to aid in the resolution of specific problems.

By providing the possibility for targeted granulate and powder manufacturers to produce a special morphology, the process simulation and modeling can also aid in the reduction of development costs. In a project sponsored by the DFG (German Research Foundation), scientists at the Fraunhofer IWM have conducted simulations on various ceramic suspensions to discover their specific differences regarding the resulting granules.

"We have combined several primary particles in the suspension to be represented by a single particle in our simulation," states Breinlinger, who goes on to say that the particles in the simulation have been slightly enlarged, to facilitate better and more predictable calculations and descriptions. "Depending on whether the primary particles in the suspension have agglomerated rather than dispersed, the particles in the simulation maintain different properties, which aid in mapping the interaction of the primary particles," he explains.

This means that the influence of the interaction of microscopically small primary particles on the formation of granular materials can be directly described, without the need for further simulations. As a basis for his work, the Fraunhofer scientists rely on their many years of experience in materials modeling and simulation, in particle flow simulation, in the development of simulation codes and corresponding methods, as well as on the profound understanding of materials and material systems established at the Fraunhofer IWM.

Implementing the simulation to the technical process of spray drying

The materials specialists are now seeking an industrial partner with whom they can conduct and refine spray drying process simulations. Currently under consideration is the energy potential between particles in an approximated form as well as the calculation of a "smeared" suspension behavior. In the future they plan still further in-depth simulations of these parameters so as to validate concrete applications. "The tool already works very well and we look forward to continuing to refine and implement it for large scale commercial use" concludes Breinlinger.

Weitere Informationen:

http://www.en.iwm.fraunhofer.de/press-events-publications/details/id/1011/ - Press release online -
http://www.en.iwm.fraunhofer.de/business-units/manufacturing-processes/powder-te... - Fraunhofer IWM: Powder Technology, Fluid Dynamics -

Thomas Götz | Fraunhofer-Institut für Werkstoffmechanik IWM

Further reports about: Fluid IWM drying explains glass granular materials granule granules materials powder

More articles from Process Engineering:

nachricht Jelly with memory – predicting the leveling of com-mercial paints
15.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Fraunhofer researchers develop measuring system for ZF factory in Saarbrücken
21.11.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>