Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small parts make the difference

12.01.2016

Call for partners: high coating-rate vacuum deposition for small parts in big volumes

Bulk goods? – yes, numerous small parts in industrial manufacturing are produced and processed in such large quantities that we speak of them as bulk goods. Metallic fasteners like screws, bolts, and rivets fall into this category.


PVD-coated bolts and nuts

Fraunhofer FEP


Electrical resistance after aging in heat treatment facility at 80°C

Fraunhofer FEP

Their use frequently remains unseen, and yet they play an enormous role in the manufacturing of industrial goods. The quality of a product can be measured by the quality of the fasteners used as well. Coatings for these kinds of fasteners improve their wear characteristics during processing as well as their operating life when they join parts together to form a whole.

The Component Coating Working Group of Fraunhofer FEP has long been dedicated to developing coating processes for these small parts based on physical vapor deposition (PVD). This development work has focused on fasteners for the car industry that are coated to inhibit corrosion.

We have reached a point today when it is possible to produce 10 µm aluminum-based anti-corrosion coatings on small batches of fasteners in a roughly one-hour coating procedure. The technology has awakened the interest of industrial coating service firms that are involved with scaling up to actual industrial requirements.

It has also been nominated for the 2015 Steel Innovation Award of the German Steel Association (Wirtschaftsvereinigung Stahl). The spectrum of research topics in this competition reflects the importance of light-weight construction techniques in industrial manufacturing and has reinforced the conviction of the developers that their process will become a component in producing new competitive products that allow dissimilar materials to be joined together using corrosion-resistant fasteners.

In the transportation sector, especially in automotive manufacturing, the efforts to save weight and conserve natural resources have been unabated. This continuous evolution of components together with the use of new construction materials places new demands on fasteners and their surfaces.

Besides corrosion protection, additional functionality is being demanded of coatings, especially for composite and dissimilar materials. For example, equalization of electrical voltages between various component groups is taking place via microcurrents across multiple component interfaces.

This equalization benefits from minimum electrical contact resistances. PVD layers have proven themselves superior to other anti-corrosion coatings in this application. The PVD engineering facility at Fraunhofer FEP offers many options with respect to coating materials and coating buildup through a combination of various vacuum coating processes.

Together with the Work Group for Mechanical Joining under the Chair of Joining Technology and Assembly at TU Dresden, the Fraunhofer team intends to dedicate themselves in the future to further improving the electrical, mechanical, and anti-corrosion properties of coatings.

Coating architectures with intermediate layers of a second metal can be realized for this purpose and their mechanical and electrical properties will be investigated in-situ. The Work Group at TU Dresden can produce joins using coated riveting components and subject the bonded joins to detailed characterization that includes electrical testing.

Both these research groups are now seeking industrial partners in order to merge both scientific and practical experience in applications-oriented projects and work in a goal-oriented manner on these complex problems jointly.

Contact FEP:

Dr. Fred Fietzke
fred.fietzke@fep.fraunhofer.de
Tel.: 0351 / 2586-366

Dr. Heidrun Klostermann
heidrun.klostermann@fep.fraunhofer.de
Tel.: 0351 / 2586-367

Contact TU Dresden:

Dipl.-Ing. Jan Kalich
Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Fertigungstechnik
Professur Fügetechnik und Montage
Tel.: 0351 / 463-37858
jan.kalich@tu-dresden.de

Weitere Informationen:

http://s.fhg.de/ize

Annett Arnold | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

More articles from Process Engineering:

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht A laser for divers
03.05.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>