Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Infrared speeds up Powder Coating of Signs

12.12.2007
A medium wave infrared oven from Heraeus Noblelight is helping Hawes Signs to achieve significant increases in production line speed in the powder coating of aluminium and steel panels at the company’s Northampton headquarters manufacturing site. The new oven was installed during an on-going, up-grading programme, which aims to see continuous improvement in all aspects of Hawes’ manufacturing operations.

Hawes Signs offers design, manufacture, installation and maintenance of a comprehensive range of external and internal signs for customers ranging from high street banks to car dealerships and supermarket chains. The company’s advanced manufacturing facilities include the latest in digital printing, vinyl cutting and flexible machine tool technology, so that it is ideally suited to handle large volume roll-out programmes as well having the capability to meet lower volume customised requirements.


Powder coatings can be quickly and reliably heated to the required temperatures by medium wave, electric infrared. Copyright Heraeus Noblelight 2007

Naturally, finishing operations are vital to the production of high quality signage and environmentally-friendly powder coating is used to provide a sign surface which offers high gloss-retention and is highly resistant to chipping, scratching, fading and weatherability. The powder-coating facility at Hawes Signs uses epoxy/polyester/pigment powders which are sprayed directly onto predominantly steel and aluminium panels, of various sizes. This powder must then be brought to a temperature which allows it to flow and fuse before being cured for a given time.

Previously, the sprayed-on powder had been pre-heated by a gas-fired infrared system before entering a warm air convection oven for final curing. However, this oven was starting to cause maintenance problems and to eliminate unwanted line stoppages while, at the same time increasing line speeds, it was decided to investigate alternative powder pre-heating methods.

Extensive tests were carried out at Heraeus’ Neston Applications Centre and these showed that the powder coatings could be quickly and reliably heated to the required temperatures by medium wave, electric infrared. As a result, a purpose-built medium wave, infrared oven was conveniently retrofitted into the existing powder coating and curing line, between the coating cabin and the warm air oven. This consists of two parallel zones, a 50kW zone which heats the coated side of the panels and a 35kW zone which heats the rear, uncoated side of the panels to accelerate the heating effect. Each of the zones can themselves be switched between two power outputs to accommodate two sizes of panel.

Since installation, the oven has helped to speed up the powder coating process as it heats the powder faster than the old system and it has also reduced the cure dwell time in the convection oven. In addition, quality has improved, as the medium wave heaters provide a uniform flow and fusion of the powders.

Heraeus Noblelight GmbH with its headquarters in Hanau and with subsidiaries in the USA, Great Britain, France, China, Australia and Puerto Rico, is one of the technology- and market-leaders in the production of specialist light sources. In 2006, Heraeus Noblelight had an annual turnover of 88 Million € and employed 651 people worldwide. The organisation develops, manufactures and markets infrared and ultraviolet emitters for applications in industrial manufacture, environmental protection, medicine and cosmetics, research, development and analytical laboratories.

Heraeus, the precious metals and technology group headquartered in Hanau, Germany, is a global, private company in the business segments of precious metals, sensors, dental and medical products, quartz glass and specialty lighting sources. With revenues of more than EUR 10 billion and more than 11,000 employees in over 100 companies, Heraeus has stood out for more than 155 years as one of the world’s leading companies involved in precious metals and materials technology.

Hawes Signs is part of ECCE International, a unique global signage company owned equally by Hawes (UK), Kubald (Germany) and Rousseau (France).

Further Information:

Readers:
Heraeus Noblelight GmbH
Reinhard-Heraeus-Ring 7
D-63801 Kleinostheim
phone +49 6181/35-8545, fax +49 6181/35-16 8545
E-Mail hng-infrared@heraeus.com
Press:
Dr. Marie-Luise Bopp
Heraeus Noblelight GmbH,
phone +49 6181/35-8547, fax +49 6181/35-16 8547
E-Mail marie-luise.bopp@heraeus.com

Marie-Luise Bopp | Heraeus Noblelight GmbH
Further information:
http://www.heraeus.com
http://www.heraeus-noblelight.com

More articles from Process Engineering:

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht A laser for divers
03.05.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>