Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New process for cell transfection in high-throughput screening

21.03.2016

So far, the established methods for an efficient and cell-preserving transfection in high-throughput screening lead to unsatisfactory results. Within the scope of a project of the Industrial Joint Research (IFG), the Laser Zentrum Hannover e.V. (LZH) and its partners succeeded in developing a functional model for a gold nanoparticle-based laser transfection in high-throughput.

This transfection method is characterized by molecules entering the cells through an optically induced process. By attaching the gold nanoparticles to the cells, a photothermal effect is achieved under laser irradiation, which enables an efficient transfer of molecules into the cells.


Functional model for high-throughput screening.

Illustration: LZH


Selective manipulation of cells with fluorescent 10 kDa dextrans: The result of targeted laser irradiation using a laser mask can be seen under a microscope. Scale bars 10 mm

photo: LZH

Many advantages by changing the method

In comparison to the established methods for cell transfection, the risks and efforts can be considerably reduced by the gold nanoparticle process. The use of an optical mechanism also makes the method much more independent from the cell type and molecules used. Also, within larger samples, the transfection can be carried out both more precisely and cell-specifically.

Application tests and method comparisons for customers

Within the course of the project, a large amount of application data could already be collected, and application fields could be verified. The Biophotonic Imaging & Manipulation Group offers testing services for customer-specific methods and questions. Also, methods for cell transfection processes can be compared according to customer requirements.

Follow-up project with new partners

The project has been successfully completed by presenting a functional model. Now, the scientists are planning to continue their work. Methods for use in high-throughput testing shall be further developed and made ready for the market. Presently, the LZH is looking for partners from the screening area to build a prototype in the follow-up project.

The project “Setup and testing of a functional model for gold nanoparticle-based (GNOME) laser transfection in high throughput mode” is IGF project no. 18129 N of the Forschungsvereinigung Feinmechanik, Optik und Medizintechnik F.O.M. (Reseach Consortium Fine Mechanics, Optics and Medical Technology). It is supported via the German Federation of Industrial Research Associations "Otto von Guericke" e.V. (AiF) within the framewok of the Industrial Joint Research (IFG) of the Federal Ministry for Economic Affairs and Energy (BMWi). The members of the advisory committee were: Center for Applied Nanotechnology (CAN) GmbH, Cenix BioScience GmbH, European ScreeningPort GmbH, IBA GmbH, LaVision BioTec GmbH and LLS Rowiak LaserLabSolutions GmbH.

Dr. Nadine Tinne | Laser Zentrum Hannover e.V.

More articles from Process Engineering:

nachricht Dresdner scientists print tomorrow’s world
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First long-term stabile brain implant developed based on an anti-inflammatory coating

No sugar coating, but sweet nonetheless

Complex neurotechnological devices are required to directly select and influence brain waves inside the skull’s interior. Although it has become relatively...

Im Focus: Monitoring Pollen Using an Aircraft: Pollen Present at Variable Elevations

Plant pollen and fungal spores can be found at variable heights in the air, even at elevations up to 2000 meters. This is the conclusion of a report by researchers of Helmholtz Zentrum München and Technical University of Munich together with Greek colleagues, which was published in the journal ‘Scientific Reports’. Hitherto it was assumed that such allergens are mainly present close to where they are released, namely near ground level.

One in every five Europeans currently already suffers from allergies – and the trend is increasing. Plant pollen and fungal spores contribute considerably to...

Im Focus: Observing live phase transition - watching the atoms race

By comparison, a blink lasts a lifetime – atoms can rearrange themselves within one 350 quadrillionths of a second. As reported in the latest issue of the prestigious journal Nature, scientists at the Center for Nanointegration (CENIDE) at the University of Duisburg-Essen (UDE), together with their colleagues from the University of Paderborn, have been able to observe the movement of a one-dimensional material in real-time. Their research confirms that the acceleration of the atoms could leave even a Porsche standing.

Everything that surrounds us in our everyday life is three-dimensional, no matter how small: salt crystals, pollen, dust – even aluminium foil has a certain...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

 
Latest News

To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon

05.04.2017 | Power and Electrical Engineering

First long-term stabile brain implant developed based on an anti-inflammatory coating

05.04.2017 | Life Sciences

Jumping droplets extinguish unpredictable hotspots in electronics

05.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>