Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanopores could take the salt out of seawater

12.11.2015

University of Illinois engineers have found an energy-efficient material for removing salt from seawater that could provide a rebuttal to poet Samuel Taylor Coleridge's lament, "Water, water, every where, nor any drop to drink."

The material, a nanometer-thick sheet of molybdenum disulfide (MoS2) riddled with tiny holes called nanopores, is specially designed to let high volumes of water through but keep salt and other contaminates out, a process called desalination.


A computer model of a nanopore in a single-layer sheet of MoS2 shows that high volumes of water can pass through the pore using less pressure than standard plastic membranes. Salt water is shown on the left, fresh water on the right.

Graphic courtesy of Mohammad Heiranian

In a study published in the journal Nature Communications, the Illinois team modeled various thin-film membranes and found that MoS2 showed the greatest efficiency, filtering through up to 70 percent more water than graphene membranes.

"Even though we have a lot of water on this planet, there is very little that is drinkable," said study leader Narayana Aluru, a U. of I. professor of mechanical science and engineering. "If we could find a low-cost, efficient way to purify sea water, we would be making good strides in solving the water crisis.

"Finding materials for efficient desalination has been a big issue, and I think this work lays the foundation for next-generation materials. These materials are efficient in terms of energy usage and fouling, which are issues that have plagued desalination technology for a long time," said Aluru, who also is affiliated with the Beckman Institute for Advanced Science and Technology at the U. of I.

Most available desalination technologies rely on a process called reverse osmosis to push seawater through a thin plastic membrane to make fresh water. The membrane has holes in it small enough to not let salt or dirt through, but large enough to let water through. They are very good at filtering out salt, but yield only a trickle of fresh water. Although thin to the eye, these membranes are still relatively thick for filtering on the molecular level, so a lot of pressure has to be applied to push the water through.

"Reverse osmosis is a very expensive process," Aluru said. "It's very energy intensive. A lot of power is required to do this process, and it's not very efficient. In addition, the membranes fail because of clogging. So we'd like to make it cheaper and make the membranes more efficient so they don't fail as often. We also don't want to have to use a lot of pressure to get a high flow rate of water."

One way to dramatically increase the water flow is to make the membrane thinner, since the required force is proportional to the membrane thickness. Researchers have been looking at nanometer-thin membranes such as graphene. However, graphene presents its own challenges in the way it interacts with water.

Aluru's group has previously studied MoS2 nanopores as a platform for DNA sequencing and decided to explore its properties for water desalination. Using the Blue Waters supercomputer at the National Center for Supercomputing Applications at the U. of I., they found that a single-layer sheet of MoS2 outperformed its competitors thanks to a combination of thinness, pore geometry and chemical properties.

A MoS2 molecule has one molybdenum atom sandwiched between two sulfur atoms. A sheet of MoS2, then, has sulfur coating either side with the molybdenum in the center. The researchers found that creating a pore in the sheet that left an exposed ring of molybdenum around the center of the pore created a nozzle-like shape that drew water through the pore.

"MoS2 has inherent advantages in that the molybdenum in the center attracts water, then the sulfur on the other side pushes it away, so we have much higher rate of water going through the pore," said graduate student Mohammad Heiranian, the first author of the study. "It's inherent in the chemistry of MoS2 and the geometry of the pore, so we don't have to functionalize the pore, which is a very complex process with graphene."

In addition to the chemical properties, the single-layer sheets of MoS2 have the advantages of thinness, requiring much less energy, which in turn dramatically reduces operating costs. MoS2 also is a robust material, so even such a thin sheet is able to withstand the necessary pressures and water volumes.

The Illinois researchers are establishing collaborations to experimentally test MoS2 for water desalination and to test its rate of fouling, or clogging of the pores, a major problem for plastic membranes. MoS2 is a relatively new material, but the researchers believe that manufacturing techniques will improve as its high performance becomes more sought-after for various applications.

"Nanotechnology could play a great role in reducing the cost of desalination plants and making them energy efficient," said Amir Barati Farimani, who worked on the study as a graduate student at Illinois and is now a postdoctoral fellow at Stanford University. "I'm in California now, and there's a lot of talk about the drought and how to tackle it. I'm very hopeful that this work can help the designers of desalination plants. This type of thin membrane can increase return on investment because they are much more energy efficient."

###

The Air Force Office of Scientific Research, the National Science Foundation and the Beckman Institute supported this work.

Editor's notes: To reach Narayana Aluru, call 217-333-1180; email aluru@illinois.edu. The paper "Water desalination with a single-layer MoS2 nanopore" is available online at http://www.nature.com/ncomms/2015/151014/ncomms9616/full/ncomms9616.html.

Media Contact

Liz Ahlberg
eahlberg@illinois.edu
217-244-1073

 @NewsAtIllinois

http://www.illinois.edu 

Liz Ahlberg | EurekAlert!

More articles from Process Engineering:

nachricht New manufacturing process for SiC power devices opens market to more competition
14.09.2017 | North Carolina State University

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>