Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LIMBO: Innovative joining technology for temperature-sensitive components

04.11.2015

This November, the Experts of the Fraunhofer Institute for Laser Technology ILT will be presentinga pioneering novelty at productronica 2015, the world's leading trade fair for electronics development and production.They are focusing on a totally new laser-based joining technique that will provide plenty of momentum to the electronics production industry.

The five letters stand for a development from Aachen that is meant to inspire specialists from the electronics manufacturing sector: they are talking about another kind of “LIMBO,” the acronym for “Laser Impulse Metal Bonding.”


A 200 µm thick copper ribbon on a PCB joined via the LIMBO process.

© Fraunhofer ILT, Aachen, Germany.


Cross-section of a LIMBO joint between a 200 µm copper interconnector and a printed circuit board.

© Fraunhofer ILT, Aachen, Germany.

“This laser process expands the process limits of conventional welding and soldering processes considerably," explains Dipl.-Ing. Simon Britten, head of the LIMBO project.

“It opens up completely new fields of applications for the joining of temperature-sensitive components.” Within three years, the researchers have developed a thermal joining process that overcomes the limitations of conventional methods and deposits only a minimum of energy in the components.

This enables the unprecedented joining of components such as thick ribbon interconnectors in power electronics with sensitive, fast-switching chips (e.g. for wind turbines or electric vehicles). In contrast to soldering, the contacts have a high temperature stability and show, in comparison to conventional welding or bonding, a minimal effect on the component.

Joined cool

“Thanks to LIMBO, we can now also thermally join thick ribbons that have a thickness of 200 µm or more with thin metallization layers,” says the expert on micro joining. “The secret is in breaking up the classical welding process into the separate phases of heating and joining.”

In contrast to typical electrical connecting processes, here a relatively large gap is used, in which a thermally isolated weld pool forms. Britten: “We control the process – which lasts a total of less than 20 milliseconds – so that the connection is essentially made solely by the energy in the melt, and not by the laser beam. This leads to a minimal energy input.”

In a process where embossment or isolation material is used to create gaps of more than 50 µm, the LIMBO process can be applied when the metallization layer has a thickness in a two-digit micrometer range. At productronica, Fraunhofer ILT will demonstrate the process using a fiber laser (wavelength: 1070 nm).

“All laser sources that can be modulated in the range of milliseconds to microseconds can be used,” explains the scientist. “What is needed for the short exposure time is a laser power of about two kilowatts, but with the fiber laser around 500 watts are also sufficient.”

Experts will be showing possible applications of LIMBO at the productronica

Now that Fraunhofer ILT has laid the basic groundwork, the project manager and his team are certain how LIMBO works and that it is reliable. “This process can be considered – thanks to its low penetration depth of less than 20 microns – for many applications with heat-sensitive components,” says Britten.

The range of possible applications for LIMBO is very broad: it extends from inserts in control technology for alternative energy (keyword: power electronics for inverters of wind turbines) to electro mobility.

“We are helping prospective customers adapt the process to their applications by means of functional models.” Interested parties can find out more about LIMBO and its potential applications at the productronica in Munich from November 10 to 13 at the Fraunhofer Joint Booth 2017 in Hall B3.

Contact

Dipl.-Ing. Simon Britten
Micro Joining Group
Telephone +49 241 8906-322
simon.britten@ilt.fraunhofer.de

Dr. Alexander Olowinsky
Head of the Micro Joining Group
Telephone +49 241 8906-491
alexander.olowinsky@ilt.fraunhofer.de

Fraunhofer Institute for Laser Technology ILT
Steinbachstraße 15
52047Aachen, Germany

Weitere Informationen:

http://www.ilt.fraunhofer.de

Petra Nolis | Fraunhofer-Institut für Lasertechnik ILT

More articles from Process Engineering:

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht A laser for divers
03.05.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>