Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Information from deep underground in a matter of seconds

21.12.2010
Continued growth in global output is pushing up demand for minerals, whilst imbalances in supply and demand are making the efficient use of natural resources an ever more important consideration. Current mining techniques for minerals cannot always guarantee the optimal exploitation of deposits, which causes the costs and time taken for mining to rise. Mining companies want a quick and reliable way to analyze potential reserves. The Fraunhofer Institute for Laser Technology ILT has now developed a system that is suitable for mining, which uses laser analysis to identify rock in real time.

The most common methods for mining mineral reserves are drilling, blasting and cutting. In order to decide which areas are worth mining, a mine operator needs to be able to model the deposit accurately, showing where, at what depth and at what concentration the desired ore is to be found. This not only avoids the pointless mining of worthless rock, it also saves the mine operator time and money in resource extraction.


The laser analyzer in use on a drilling rig. Photo acknowledgment: Institute for Mining and Metallurgy Machinery at RWTH Aachen.

Currently, the information required for the detailed modeling of a deposit is collected by core drilling: a core sample is taken from underground and sent to a laboratory, and the composition of the drilled rock is then determined using X-ray flourescence (XRF) analysis. The mine operator has to wait three to five days to receive the information. This method is the state of the art.

Because core drilling is time-consuming, mining companies are keen to see the development of a quicker analysis method that still offers sufficiently detailed information. As part of the InnoNet project OFUR – Online Analysis for Minerals Extraction – funded by the German Federal Ministry of Economics and Technology (BMWi), researchers from Fraunhofer ILT, in collaboration with the Institute for Mining and Metallurgy Machinery at RWTH Aachen University and seven partners from industry, have developed a robust demonstrator with an inline analysis module for use in mining. This directly analyzes rock as it is drilled: a 10-centimeter-diameter hole is drilled up to 24 meters deep into the rock using a conventional drilling rig that has been fitted with the analysis module. The system measures the chemical composition of the rock during drilling and makes the evaluated data available immediately. »The challenge of this project was to redesign the laser sensors so that they could withstand the operating conditions,« says Dr. Cord Fricke-Begemann, who heads up the Materials Analysis group at Fraunhofer ILT. »We’ve managed to develop measuring apparatus that can cope with extremes of temperature, strong vibrations, and high levels of moisture and dust.«

Real-time multi element analysis

The analysis method used is laser-induced breakdown spectroscopy (LIBS): the rock dust is drawn up to the surface through a hose and separated out by particle size using a cyclone. The mixture of dust and air travels through the hose at speeds of up to 20 meters per second, but it is during this journey that the actual analysis – which takes no more than 20 microseconds – is done. A high-energy laser pulse is focused on the passing dust particles. These are first vaporized and then turned into a plasma by the heat of the laser. For a brief period, the plasma radiates at a frequency that is specific to the elements it contains. The spectrometer simultaneously detects the radiation emitted by all the elements, and these data are sent to a computer for evaluation. During analysis, the laser pulse hits particles that are made up of different elements, and results are averaged for very short time periods. This provides useful information about the overall composition of the rock, whilst the chronology of the data sequence shows how the deposit is layered.

The decisive advantage of this method is its enormous time saving. Since the data are evaluated and presented in a matter of seconds, the mine operator can determine the quality of a deposit immediately and adjust the mining process accordingly. So far, this method has been used to detect magnesium, calcium, silicon, iron and aluminum. The researchers in Aachen have set themselves the challenge of soon being able to detect copper and other metals using a different spectrometer.

In the long term, this real-time procedure for multi element analysis should make it possible to automate extraction machinery. The Materials Analysis group and its partners have worked up a concept for how the system could be fitted to underground shearer loaders. Above ground, the demonstrator could be fitted to drilling rigs used for extracting mineral deposits. The inline analysis enables continuous quality control and rolling updates to the modeling of the deposit. Work has already begun on a follow-up project which aims to make the analysis system fit for industrial application. Drilling rigs with laser analysis capability would be a unique selling point for the medium-sized companies involved in the project and would open up new sales potential for them.


Contacts at Fraunhofer ILT
Our experts are happy to answer any questions:
Dr. rer. nat. Cord Fricke-Begemann
Materials Analysis
Tel. +49 241 8906-196
cord.fricke-begemann@ilt.fraunhofer.de
Dr. rer. nat. Reinhard Noll
Laser Measurement Technology
Tel. +49 241 8906-138
reinhard.noll@ilt.fraunhofer.de
Fraunhofer-Institut für Lasertechnik ILT
Steinbachstrasse 15
52074 Aachen
Tel. +49 241 8906-0
Fax. +49 241 8906-121

Axel Bauer | Fraunhofer Institut
Further information:
http://www.ilt.fraunhofer.de

Further reports about: Analysis Gold Mining ILT information technology

More articles from Process Engineering:

nachricht New manufacturing process for SiC power devices opens market to more competition
14.09.2017 | North Carolina State University

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>