Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gluing with the Laser

30.06.2015

Natural stone like marble or granite are processed with saw blades with hard-wearing, diamond cutting segments. When these are damaged or worn, the cutting segments have to be replaced. Usually, the whole saw blade is then sent to a repair shop. 

The Laser Zentrum Hannover e.V. (LZH) and the Institut für Werkzeugforschung und Werkstoffe (IFW) in Remscheid have now developed a mobile, laser-based process chain for gluing the cutting segments onto the saw blade and removing them subsequently without causing damage.


The innovative laser based gluing process could, in the future, replace soldering for refitting saw blades.

Photo: LZH


Concept of the process for laser gluing. (1) Removal of the worn cutting segment, (2) Cleaning of glue residues from the surface, (3) Surface preparation, (4) Hardening of the glue.

Figure: LZH

Up to now, the soldered cutting segments are thermally detached, the soldering partners prepared, and the new cutting segments are then soldered onto the saw blade.

The thermal stress from soldering leads to axial runout deviations (warpage) and an unfavorable distribution of stress in the saw blade. Consequently, the cutting quality decreases, and cutting losses increase. Therefore, additional process steps are necessary to align and preload the saw blades.

Laser for all the process steps

Based on laser and gluing technology, a laser-based process chain for manufacturing glued saw blades was developed at the LZH and IFW. The laser radiation only exerts minimal thermal stress onto the saw blades, so that in the best case, the blades can be refitted without preloading or alignment. Ideally, the saw blade can be refitted as often as necessary.

The laser-based process for the first and consequent fittings of the saw blade consists of four steps: First, the surfaces of the segments and the saw blade are prepared by structuring them using a pulsed laser system. The segments are then glued onto the saw blade using a one-component epoxy resin adhesive, which is thermally hardened using a continuous wave (cw) laser system.

When the life span of the segments has been reached, they are detached from the saw blade using the cw laser system. A pulsed laser system is then used to remove glue residues and impurities from the gluing partners. Following this, the saw blade can be refitted.

Refitting on the spot

For demonstration purposes, the LZH has developed a mobile unit, with which refitting can be carried out directly at the user’s premises. Such a refitted saw blade has already been used to successfully cut granite.

Advantages of Gluing

In comparison to soldering, gluing has many advantages. Among these are a very low, respectively no thermal distortion, no heat tinting, a homogeneous distribution of stress in the joining zone, and a relatively high joining strength and high vibration dampening.

The IGF project under the number 17120 N of the Forschungsvereinigung Forschungsgemeinschaft Werkzeuge und Werkstoffe e.V. (FGW) [Research Association for Tools and Materials] has been funded within the framework of the program for supporting industrial research of the German Federal Ministry for Economic Affairs and Energy (BMWi), based on a decision of the German Parliament.

A short summary of the research results can be downloaded on the website of the FGW Remscheid or the LZH (only available in German).

The final report can be ordered from the Forschungsgemeinschaft Werkzeuge und Werkstoffe e.V., Papenberger Str. 49, 42859 Remscheid.

Weitere Informationen:

http://www.lzh.de/en/publications/pressreleases/2015/gluing-with-the-laser - website of the press release with more pictures, videos and a download link for the summary of the report.

Lena Bennefeld | Laser Zentrum Hannover e.V.

More articles from Process Engineering:

nachricht Dresdner scientists print tomorrow’s world
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers create artificial materials atom-by-atom

28.03.2017 | Physics and Astronomy

Researchers show p300 protein may suppress leukemia in MDS patients

28.03.2017 | Health and Medicine

Asian dust providing key nutrients for California's giant sequoias

28.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>