Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dresdner scientists print tomorrow’s world

08.02.2017

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial applications. For example, the fabrication of dental crowns or implants is just as much within the additive manufacturing application field as the printing of aircraft components is. This does not mean that the scientists may take a break, but rather exactly the opposite!


Rocket nozzle, additively manufactured by powder-bed technology, with adapted cooling channels

Fraunhofer IWS Dresden


Printed thermoelectric module with flexible geometry

Fraunhofer IWS Dresden

“The huge potential promised by additive manufacturing can only be utilized, if science and industry cooperate. Presently we are using only a fraction of the potential which process- and materials technologies offer”, explains Prof. Christoph Leyens, head of the AMCD. The materials scientist is a professor at TU Dresden and a director of the Fraunhofer IWS.

A research team headed by Prof. Leyens coordinates the huge international research project “AGENT-3D“. This project brings together more than 100 industrial and scientific partners, who work hand in hand on solutions related to the implementation of additive manufacturing into industrial applications.

The German Federal Ministry of Education and Research has funded the project with 45 million euros. In addition, the involved industrial companies have supported the research project with about 30 million euros. Furthermore our IWS and TU scientists are working full steam on further research projects and industrial cooperations, since the international competition to find best product solutions is really strong.

Prof. Eckhard Beyer, the executive director of the Fraunhofer IWS and a professor for Laser- and Surface Technology at TU Dresden, emphasizes the significance of the research with respect to additive manufacturing in Dresden: “Scientists join the AMCD to develop future manufacturing technologies. Our primary objective is the development of industrially mature solutions and thus to strengthen the innovative and economical capability of our partners.”

The AMCD ranks among the largest centers of its kind in Europe. It has been supported by means of the Fraunhofer-Gesellschaft and the Free State of Saxony. The center offers the most important and industrially relevant manufacturing technologies for metals, ceramics and plastics. Its unique feature is the comprehensive expertise of all involved scientists with respect to process- and material know-how. Only the combination of process development and material expertise enables the production of innovative 3D-printing products, which are cost-effective and reliable as well.

For example, a rocket nozzle (Fig. 1) developed for the space industry must resist the highest loads during operation. During the additive manufacturing of the nozzle even the smallest defects or cracks have to be avoided, since they would lead to the complete rejection of the part. Our AMCD laboratories offer comprehensive techniques for non-destructive or load tests in order to detect defects or to test materials. The AMCD unites the excellent basic research expertise of TU Dresden with the comprehensive IWS application-oriented research under one roof.

“The establishment of the Center for Additive Manufacturing Dresden has an outstanding relevance for Saxony, explains Dr. Fritz Jaeckel, Minister of State, in his speech. Cutting-edge research and the development of innovative technologies are the most important prerequisites for the positive development of our Free State, our society and our companies“. Prof. Gerhard Rödel, Vice Rector of the TU Dresden highlights the enormous significance of the cooperation between the university and Fraunhofer IWS: “With the foundation of the AMCD it becomes widely visible how our research alliance DRESDEN-concept works: namely, by scientific cooperation and networking of our greatest minds.” DRESDEN-concept is an alliance of TU Dresden and non-university research partners in Dresden. It was an important element for the successful application of TU Dresden as an Excellence University.

The inauguration of the AMCD took place on the eve of the 2nd International Symposium Additive Manufacturing, being held at the International Congress Center Dresden on February 8 - 9, 2017. Invited by the Fraunhofer IWS Dresden, more than 250 experts in the field of 3D printing meet to discuss the latest developments in this rapidly advancing research field. All participants will be actively involved in discussions by means of a “World Café” – a kind of speed dating for scientists. Here, they are invited to exchange their experiences in research and application in small groups with changing discussion partners.

Contact:

Fraunhofer-Institut Werkstoff- und Strahltechnik IWS Dresden
Winterbergstr. 28, 01277 Dresden

Prof. Christoph Leyens
Phone: +49 351 83391-3242
Fax: +49 351 83391-3300
E-Mail: christoph.leyens@iws.fraunhofer.de

Public Relations
Dipl.-Ing. Virginie Garten
Phone: +49 351 83391-3336
Fax: +49 351 83391-3300
E-Mail: virginie.garten@iws.fraunhofer.de

Internet:
http://www.iws.fraunhofer.de and
http://www.iws.fraunhofer.de/en/pressandmedia/press_releases.html

Weitere Informationen:

http://www.isam.network
http://www.iws.fraunhofer.de/en/centers/additive_manufacturing.html

Dipl.-Ing. Virginie Garten | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

More articles from Process Engineering:

nachricht CeGlaFlex project: wafer-thin, unbreakable and flexible ceramic and glass
25.04.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Additive manufacturing, from macro to nano
11.04.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>