Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Combating Bacteria Via Silver-Dammar Coating

27.02.2015

Natural resins obtained from plants to be used as a coating element to enhance durability and anti-rust properties.

Coating systems are formulated using a mixture of dammar, silver and nanoclay in varied compositions. Generally the problems in the coating area are poor coat quality, poor adhesion, long curing time period, corrosion attack, attachment or bacteria attack which could also cause corrosion attack which is called as Microbiologically Influenced corrosion (MIC). These disadvantages of coating system and coating surface could lead to coating failure thus leading to substrate damage especially metal substrate.

Materials: Dammar or triterpenoids resin are natural resins which can be isolated or obtained from plants that belong to the family Dipterocaupecea sp. Dammar is well known for its glossy properties and the plant can be found abundantly in Sarawak, Malaysia. Thus, it can be used in the coating industry. The role of the dammar is to improve the adhesion property, self cleansing property and shorten the coating curing time. Silver nitrate has quite a long history of usage as an antibacterial agent.

Silver possesses good antibacterial activity. The addition of silver onto the coating system, introduces the antimicrobial property for the coating system. It is used in a variety of applications for example as protective coating for concrete, brick, wood, metal and others. It is considered as a good anti-microbial coating due to its low toxicity to where the toxicity is lower than of bacteria. However, the antibacterial activity depends on the Ag+ ions released by the silver.

If it is too high, it will result in cytotoxicity. Thus to overcome this problem nanoclay was added into the coating system. Clay is a good absorbent which belongs to the phyllosilicate group. In this case Montmorillonite clay was used as the absorbent. Montmorillonite clay form could absorb compound and store it in the pore without leaching out the compound to the surrounding environment.

Methodology: In this research work, the polyol is modified by using a solvent and mixed with dammar in varied compositions. Silver nitrate is incorporated into the optimum composition of polyol-dammar, followed by a small amount of Nano clay is dispersed into the modified Silver-polyol-dammar mixture. Then the paint mixture is spin coated onto polished Aluminium Q-panel as a substrate and is left to dry at room temperature.

This research describes the characteristics of the dammar based paint system. Adhesion property is evaluated by using crosshatch test and pull-off test. The crosshatch test method is based on ASTM D3359 standards. The wettability property of a coating is characterized by using contact angle measurement. The resistances of paint systems are also described against microbial activity by using disc diffusion and agar well diffusion method.

The results: The result of crosshatch and pull-off test shows that the coating system containing 50 wt. % of dammar (50 PD) exhibits an excellent adhesion property. The addition of dammar to polyol helps to increase the contact angle measurement up to approximately 50 degrees. The antimicrobial activity of silver nanoclay coating was demonstrated by using disc diffusion and agar well diffusion method.

The antimicrobial activity was evaluated against a few negative gram bacteria and positive gram bacteria. K. pneumoniae, E. coli, S. aureus, P. aeruginosa and B. subtilis. Moreover it is also tested against fungi, C. albicans (fungi). The largest inhibition diameter zone against E. coli and S. aureus is obtained for the silver nanoclay polyol dammar, namely PDS3 coating system.

Azizah Hanom Binti Ahmad

Institute of Science (IOS),
UiTM Shah Alam, Selangor Darul Ehsan,
Malaysia
Email: azizahanom@salam.uitm.edu.my

Darmarajah Nadarajah | ResearchSEA
Further information:
http://www.uitm.edu.my
http://www.researchsea.com

Further reports about: E coli adhesion antibacterial antimicrobial coating coating system fungi

More articles from Process Engineering:

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht A laser for divers
03.05.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>