Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CeGlaFlex project: wafer-thin, unbreakable and flexible ceramic and glass

25.04.2017

Only twice as thick as a strand of hair, or around 100 µm: that’s how thin the transparent, scratchproof and malleable ceramic layers of the future that are meant to protect portable electronics are. Since March 2017, the methods and process chains for producing this material have been in development at the Fraunhofer Institute for Laser Technology ILT as part of a three-year research project called CeGlaFlex.

Mobile electronics, regardless of whether it is a cellular phone, tablet or blood pressure monitor, rely on the quality of their touch-screen displays. In keeping with the trend of individually shaped smart devices, they should be not only scratchproof, unbreakable and chemically stable, but also easy to mold.


Structuring process by direct ablation with ultrashort pulse laser radiation.

© Fraunhofer ILT, Aachen, Germany / Volker Lannert.


A matter of shape: the Fraunhofer CeGlaFlex project is developing very thin, malleable and transparent protective covers for OLEDs in the roll-to-roll process.

© Fraunhofer FEP, Dresden, Germany.

However, this presents a dilemma for manufacturers. “Hardened glass does not possess the required design flexibility, while malleable plastic is easily scratched,” explains Christian Kalupka, ultrafast laser expert at Fraunhofer ILT. “Transparent ceramics offer an alternative. Although they have the desired properties, they are not yet available in the desired sizes and lack appropriate processing methods.”

An eye on the complete process chain

This was reason enough for the Fraunhofer-Gesellschaft to initiate the internal CeGlaFlex research project (process chain for malleable ceramic and glass-based switching and display elements) in March 2017. It involves market-oriented strategic pre-competitive research (MaVo) to develop techniques and process chains. Its objectives are to:

  • manufacture thin, and as a result malleable and transparent, ceramics and display laminates.
  • process transparent ceramics and thin glass compounds, which can be spatially reshaped without damaging the material’s functions.
  • produce integrated switching and display elements on malleable substrates made of ceramic-glass compounds.

The MaVo project is implementing the complete process chain at five Fraunhofer Institutes. The Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden is developing thin, highly transparent ceramics.

In Aachen, the Fraunhofer Institute for Production Technology IPT is working on processes for the precise mechanical finish (grinding, polishing) of surfaces and edges of transparent, thin ceramics and glass, while the neighboring Fraunhofer Institute for Laser Technology ILT focuses on customized laser processing (polishing, structuring, separating).

In Halle (near Leipzig), the Fraunhofer Institute for Microstructure of Materials and Systems IMWS is developing material testing methods that are important for assessing component quality. Final implementation of the process takes place at the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP in Dresden, which builds marketable demonstrators.

Huge market potential

Kalupka is optimistic about the project’s future. “Thanks to the technologies developed in the joint project, wafer-thin ceramic will be used to manufacture flexible and unbreakable displays for portable electronics of the future. I’m confident that they will play a major role in the success of many smart mobile devices.”

Weitere Informationen:

http://www.ilt.fraunhofer.de/en.html

Petra Nolis M.A. | Fraunhofer-Institut für Lasertechnik ILT

More articles from Process Engineering:

nachricht New manufacturing process for SiC power devices opens market to more competition
14.09.2017 | North Carolina State University

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>