Active control of IBS processes in the near future

IBS coating equipment with process controls. Photo: LZH

Up to now, IBS processes, in comparison to magnetron processes for example, could only be guided by using set parameters, but without online control. Fundamental knowledge of the influence of plasma parameters was missing.

For this reason, the Process Development Group of the LZH investigated how exactly IBS coating processes work, within the framework of the joint project PluTO (Plasma and optical technologies). For example, they were able to quantify the ions of sputtered materials separately from the background plasma.

Furthermore, they could analyze in detail the reactive processes on the target surface. With this knowledge, they were able to develop new strategies to decisively improve the quality, reproducibility and exploitation of IBS processes.

Simulation of the process beforehand

Additionally, the scientists developed a new, versatile tool for describing layer condensation. This tool can be used to simulate processes on an atomic level, so that in the future it is possible to adapt the parameters to the demands of deposition processes, for example for the stoichiometry, thickness or roughness of the layers.

In the recently started follow-up project PluTO+, information from the project PluTO are to be transferred into industry. For this, the LZH has developed control sequences for the IBS process. In combination with innovative plasma diagnostics, it would be possible to follow the course of a process online, to make predictions, and accordingly intervene in these processes. This would make the coating processes more precise, more stable and faster and thus less expensive.

In the collaborative project PluTO, five research organizations in the fields of plasma technology and optical thin-film coating technology have worked on gaining basic knowledge on plasma supported coating processes. The PluTO+ network consists of four research institutes and eight industrial partners under leadership of the Bühler Alzenau GmbH. Both PluTO and PluTO+ have been funded by the German Federal Ministry of Education and Research.

Media Contact

Lena Bennefeld Laser Zentrum Hannover e.V.

More Information:

http://www.lzh.de/

All latest news from the category: Process Engineering

This special field revolves around processes for modifying material properties (milling, cooling), composition (filtration, distillation) and type (oxidation, hydration).

Valuable information is available on a broad range of technologies including material separation, laser processes, measuring techniques and robot engineering in addition to testing methods and coating and materials analysis processes.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors