Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Active control of IBS processes in the near future

16.03.2015

Highly precise and stable surface coatings are essential for many applications, whether for eyeglasses, or for optics for lasers or telescopes. The project PluTO created a basic understanding of plasma-based coatings. The aim of the project PluTO+ is now to transfer these to industrial applications. For this, the Laser Zentrum Hannover e.V. (LZH) is working on controlling ion beam sputtering (IBS).

Up to now, IBS processes, in comparison to magnetron processes for example, could only be guided by using set parameters, but without online control. Fundamental knowledge of the influence of plasma parameters was missing.


IBS coating equipment with process controls.

Photo: LZH


IBS process with two ion sources in use.

Photo: LZH

For this reason, the Process Development Group of the LZH investigated how exactly IBS coating processes work, within the framework of the joint project PluTO (Plasma and optical technologies). For example, they were able to quantify the ions of sputtered materials separately from the background plasma.

Furthermore, they could analyze in detail the reactive processes on the target surface. With this knowledge, they were able to develop new strategies to decisively improve the quality, reproducibility and exploitation of IBS processes.

Simulation of the process beforehand

Additionally, the scientists developed a new, versatile tool for describing layer condensation. This tool can be used to simulate processes on an atomic level, so that in the future it is possible to adapt the parameters to the demands of deposition processes, for example for the stoichiometry, thickness or roughness of the layers.

In the recently started follow-up project PluTO+, information from the project PluTO are to be transferred into industry. For this, the LZH has developed control sequences for the IBS process. In combination with innovative plasma diagnostics, it would be possible to follow the course of a process online, to make predictions, and accordingly intervene in these processes. This would make the coating processes more precise, more stable and faster and thus less expensive.

In the collaborative project PluTO, five research organizations in the fields of plasma technology and optical thin-film coating technology have worked on gaining basic knowledge on plasma supported coating processes. The PluTO+ network consists of four research institutes and eight industrial partners under leadership of the Bühler Alzenau GmbH. Both PluTO and PluTO+ have been funded by the German Federal Ministry of Education and Research.

Lena Bennefeld | Laser Zentrum Hannover e.V.
Further information:
http://www.lzh.de/

More articles from Process Engineering:

nachricht Dresdner scientists print tomorrow’s world
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>