Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

X-ray microscope optics resolve 50-nm features while eliminating chromatic aberrations

03.05.2017

An optical system for a full-field X-ray microscope eliminates chromatic aberrations that previously limited resolution capabilities

X-ray microscopes are commonly used in combination with full-field imaging techniques in spectromicroscopy applications, where they allow the chemical structures of materials to be analyzed and visualized simultaneously.


This is a schematic of an achromatic X-ray microscope based on total-reflection mirrors.

Credit: Osaka University

However, the performance of these microscopes is often affected by problems with chromatic aberrations-- optical effects that limit the resolution or degree of fineness to which images of the material structures can be acquired--and previous solutions to the problem have often proved difficult to manufacture and implement.

A collaborative team led by researchers from Osaka University has therefore developed an optical system for use in full-field X-ray microscopes that offers a more practical way to overcome the chromatic aberration problem.

"We developed an imaging optical system based on use of two monolithic imaging mirrors," says Assistant Professor Satoshi Matsuyama from Osaka University's Graduate School of Engineering. "These mirrors have elliptical and hyperbolic shapes on a single substrate, and fixing of the relative positioning between the ellipse and the hyperbola can provide high image quality with lasting stability."

Fabrication of this complex mirror system meant that existing manufacturing processes had to be modified, but the proposed mirror structures were produced with the required shapes to an accuracy of approximately 1 nm.

After the mirror structure was assembled using a specially developed alignment system, it was implemented in a full-field X-ray microscope system for performance testing at the SPring-8 synchrotron radiation facility.

"The microscope was tested for its spatial resolution, the presence of chromatic aberrations, and long-term stability using a fine test pattern called a Siemens star and a photon energy of approximately 10 keV," explains Professor Kazuto Yamauchi of Osaka University's Center for Ultra-Precision Science and Technology. "We were able to clearly resolve 50-nm-sized features with high stability over a period of 20 hours without any chromatic aberrations."

The developed system was then applied in X-ray absorption fine structure spectromicroscopy experiments, and successfully identified both elements and chemical states in micron-sized specimens of zinc and tungsten.

While the system will be subjected to further research to improve its performance towards the theoretical limit, it already shows considerable promise for use in a wide range of applications, including ultra-fast imaging with high-intensity X-rays and high-resolution full-field X-ray fluorescence imaging.

This mirror structure may also find use in other systems, with potential applications that include focusing and imaging optics for synchrotron radiation X-rays and X-ray-free electron lasers.

Saori Obayashi | EurekAlert!

More articles from Physics and Astronomy:

nachricht Structured light and nanomaterials open new ways to tailor light at the nanoscale
23.04.2018 | Academy of Finland

nachricht On the shape of the 'petal' for the dissipation curve
23.04.2018 | Lobachevsky University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

Scientists create innovative new 'green' concrete using graphene

24.04.2018 | Materials Sciences

BAM@Hannover Messe: innovative 3D printing method for space flight

24.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>