Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017

For the first time, astronomers have succeeded in obtaining a map of the turbulent motions in the atmosphere of a star other than the Sun, thanks to an innovative technique that combines three telescopes at the European Southern Observatory (ESO) on Cerro Paranal located in northern Chile. The astronomer Keiichi Ohnaka at the Universidad Católica del Norte in Antofagasta, Chile, led the research. He and his partners Gerd Weigelt and Karl-Heinz Hofmann from the Max Planck Institute for Radio Astronomy in Bonn, Germany obtained unprecedented velocity-resolved images of the surface and the atmosphere of a distant star.

The team was able to measure the intensity (Figure 1) and velocity of the gas at each position over the surface and atmosphere of the red supergiant star Antares (Alpha Scorpii) at a distance of about 600 light years.


First image of Antares: stellar disk (yellow) with two brighter regions (white) and the extended atmosphere (blue). The red supergiant has a diameter 700 times larger than the diameter of our Sun.

K. Ohnaka et al. 2017, Nature 548, 310

“For the first time, we have succeeded in obtaining a two-dimensional map of the dynamics, that is, the motions in the atmosphere of a star other than the Sun. The observations were performed with ESO’s Very Large Telescope Interferometer (VLTI) and the AMBER beam combiner instrument. The gas velocity can be derived from shifts of spectral lines because of the Doppler effect“, explains Keiichi Ohnaka.

When stars approach the end of their life, they start to lose material from the surface and atmosphere— a process called mass loss. While red supergiant stars like Antares are known to be experiencing intense mass loss, it is still unknown how it occurs—actually a long-standing problem over half a century.

One of the best ways to investigate this process is to observe the dynamics of the gas—the motions and the velocity—close to the star. Some images of the surface of stars had been taken before, but only for a very limited number of cases and without information about the gas motions in the atmosphere.

Single telescopes are not able to resolve surface structures on stars other than our Sun. However, if one combines („interferes“) the light from several telescopes, the required high angular resolution can be obtained. This method is called interferometry.

“The achievable resolution is proportional to the distance between the individual telescopes”, explains Karl-Heinz Hofmann. “We used the AMBER beam combiner instrument of ESO’s Very Large Telescope Interferometer for our observations because it allows us to perform measurements with high spectral resolution and to measure velocities“.

“If we obtain maps of the gas motions at different heights throughout the atmosphere, we can obtain a three-dimensional picture of how the gas is moving in the atmosphere of stars,” emphasizes Keiichi Ohnaka. The team is already working on such a project, going from 2D to 3D, aiming at finally solving the mystery behind the mass-loss process.

The images of Antares provide new clues for understanding how this star loses mass. The team found out that the material is not spilling out in an ordered manner in Antares but the material is expelled in a random and turbulent manner.

“This interferometric imaging method allows us to study not only stars in late evolutionary stages, but also, for example, very young stars surrounded by circumstellar disks, in which planets can form, and even extragalactic objects”, concludes Gerd Weigelt. “In all these projects, it is of greatest importance to obtain both high angular resolution and high spectral resolution to study the velocity distribution in the gas.” In the future, the new VLTI instrument MATISSE will provide a unique opportunity to perform such observations in a wide wavelength range for the first time.

Original Paper:

Vigorous atmospheric motion in the red supergiant star Antares, K. Ohnaka, G. Weigelt & K.-H. Hofmann, 2017, Nature (August 17, 2017).

Contact:

Prof. Dr. Gerd Weigelt,
Head of Research Group Infrared Astronomy
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49 228 525-243
E-mail: gweigelt@mpifr-bonn.mpg.de

Prof. Dr. Keiichi Ohnaka,
Instituto de Astronomía, Universidad Católica del Norte
Fon: +56 55 2355493
E-mail: k1.ohnaka@gmail.com

Dr. Karl-Heinz Hofmann,
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49 228 525-290
E-mail: khh@mpifr-bonn.mpg.de

Dr. Norbert Junkes,
Press and Public Outreach
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49 228 525-399
E-mail: njunkes@mpifr-bonn.mpg.de

Weitere Informationen:

http://www.mpifr-bonn.mpg.de/pressreleases/2017/6

Norbert Junkes | Max-Planck-Institut für Radioastronomie

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>