Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why do starburst galaxies 'burst'?

16.02.2015

ALMA sees super stellar nurseries at heart of sculptor galaxy

Starburst galaxies transmute gas into new stars at a dizzying pace - up to 1,000 times faster than typical spiral galaxies like the Milky Way. To help understand why some galaxies "burst" while others do not, an international team of astronomers used the Atacama Large Millimeter/submillimeter Array (ALMA) to dissect a cluster of star-forming clouds at the heart of NGC 253, one of the nearest starburst galaxies to the Milky Way.


What is the recipe for starburst? Astronomers studied NGC 253 with ALMA to find out. These new ALMA data reveal a diffuse envelope of carbon monoxide gas (shown in red), which surrounds stellar nurseries -- regions of active star formation (in yellow). By dissecting these regions with ALMA, astronomers are uncovering clues to the processes and conditions that drive furious star formation. The ALMA data are superimposed on a Hubble image that covers part of the same region.

Credit: B. Saxton (NRAO/AUI/NSF); ALMA (NRAO/ESO/NAOJ); A. Leroy; STScI/NASA, ST-ECF/ESA, CADC/NRC/CSA

"All stars form in dense clouds of dust and gas," said Adam Leroy, an astronomer formerly with the National Radio Astronomy Observatory (NRAO) in Charlottesville, Virginia, and now with The Ohio State University in Columbus. "Until now, however, scientists struggled to see exactly what was going on inside starburst galaxies that distinguished them from other star-forming regions."

ALMA changes that by offering the power to resolve individual star-forming structures, even in distant systems. As an early demonstration of this capability, Leroy and his colleagues mapped the distributions and motions of multiple molecules in clouds at the core of NGC 253, also known as the Sculptor Galaxy.

Sculptor, a disk-shape galaxy currently undergoing intense starburst, is located approximately 11.5 million light-years from Earth, which is remarkably nearby for such an energetic star factory. This proximity makes Sculptor an excellent target for detailed study.

"There is a class of galaxies and parts of galaxies, we call them starbursts, where we know that gas is just plain better at forming stars," noted Leroy. "To understand why, we took one of the nearest such regions and pulled it apart - layer by layer - to see what makes the gas in these places so much more efficient at star formation."

ALMA's exceptional resolution and sensitivity allowed the researchers to first identify ten distinct stellar nurseries inside the heart of Sculptor, something that was remarkably hard to accomplish with earlier telescopes, which blurred the different regions together.

The team then mapped the distribution of about 40 millimeter-wavelength "signatures" from different molecules inside the center of the galaxy. This was critically important since different molecules correspond to different conditions in and around star-forming clouds. For example, carbon monoxide (CO) corresponds to massive envelopes of less dense gas that surround stellar nurseries. Other molecules, like hydrogen cyanide (HCN), reveal dense areas of active star formation. Still rarer molecules, like H13CN and H13CO+, indicate even denser regions.

By comparing the concentration, distribution, and motion of these molecules, the researchers were able to peel apart the star-forming clouds in Sculptor, revealing that they are much more massive, ten times denser, and far more turbulent than similar clouds in normal spiral galaxies.

These stark differences suggest that it's not just the number of stellar nurseries that sets the throttle for a galaxy to create new stars, but also what kind of stellar nurseries are present. Because the star-forming clouds in Sculptor pack so much material into such a small space, they are simply better at forming stars than the clouds in a galaxy like the Milky Way. Starburst galaxies, therefore, show real physical changes in the star-formation process, not just a one-to-one scaling of star formation with the available reservoir of material.

"These differences have wide-ranging implications for how galaxies grow and evolve," concluded Leroy. "What we would ultimately like to know is whether a starburst like Sculptor produces not just more stars, but different types of stars than a galaxy like the Milky Way. ALMA is bringing us much closer to that goal."

These results are accepted for publication in the Astrophysical Journal and are being presented February 15, 2015, at a news conference at the American Association for the Advancement of Science (AAAS) meeting in San Jose, California.

The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of Europe, North America and East Asia in cooperation with the Republic of Chile. ALMA is funded in Europe by the European Organization for Astronomical Research in the Southern Hemisphere (ESO), in North America by the U.S. National Science Foundation (NSF) in cooperation with the National Research Council of Canada (NRC) and the National Science Council of Taiwan (NSC) and in East Asia by the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Academia Sinica (AS) in Taiwan and the Korea Astronomy and Space Science Institute (KASI).

ALMA construction and operations are led on behalf of Europe by ESO, on behalf of North America by the National Radio Astronomy Observatory (NRAO), which is managed by Associated Universities, Inc. (AUI) and on behalf of East Asia by the National Astronomical Observatory of Japan (NAOJ). The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.

Media Contact

Charles Blue
cblue@nrao.edu
434-296-0314

 @TheNRAO

http://www.nrao.edu 

Charles Blue | EurekAlert!

More articles from Physics and Astronomy:

nachricht Magnetic nano-imaging on a table top
20.04.2018 | Georg-August-Universität Göttingen

nachricht New record on squeezing light to one atom: Atomic Lego guides light below one nanometer
20.04.2018 | ICFO-The Institute of Photonic Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>