Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What do Netflix, Google and planetary systems have in common?

02.12.2016

Same class of algorithms used by Google and Netflix can also tell us if distant planetary systems are stable or not

Machine learning is a powerful tool used for a variety of tasks in modern life, from fraud detection and sorting spam in Google, to making movie recommendations on Netflix.


Artist's depiction of a collision between two planetary bodies.

Credit: NASA/JPL-Caltech

Now a team of researchers from the University of Toronto Scarborough have developed a novel approach in using it to determine whether planetary systems are stable or not.

"Machine learning offers a powerful way to tackle a problem in astrophysics, and that's predicting whether planetary systems are stable," says Dan Tamayo, lead author of the research and a postdoctoral fellow in the Centre for Planetary Science at U of T Scarborough.

Machine learning is a form of artificial intelligence that gives computers the ability to learn without having to be constantly programmed for a specific task. The benefit is that it can teach computers to learn and change when exposed to new data, not to mention it's also very efficient.

The method developed by Tamayo and his team is 1,000 times faster than traditional methods in predicting stability.

"In the past we've been hamstrung in trying to figure out whether planetary systems are stable by methods that couldn't handle the amount of data we were throwing at it," he says.

It's important to know whether planetary systems are stable or not because it can tell us a great deal about how these systems formed. It can also offer valuable new information about exoplanets that is not offered by current methods of observation.

There are several current methods of detecting exoplanets that provide information such as the size of the planet and its orbital period, but they may not provide the planet's mass or how elliptical their orbit is, which are all factors that affect stability, notes Tamayo.

The method developed by Tamayo and his team is the result of a series of workshops at U of T Scarborough covering how machine learning could help tackle specific scientific problems. The research is currently published online in the Astrophysical Journal Letters.

"What's encouraging is that our findings tell us that investing weeks of computation to train machine learning models is worth it because not only is this tool accurate, it also works much faster," he adds.

It may also come in handy when analysing data from NASA's Transiting Exoplanet Survey Satellite (TESS) set to launch next year. The two-year mission will focus on discovering new exoplanets by focusing on the brightest stars near our solar system.

"It could be a useful tool because predicting stability would allow us to learn more about the system, from the upper limits of mass to the eccentricities of these planets," says Tamayo.

"It could be a very useful tool in better understanding those systems."

Media Contact

Don Campbell
dcampbell@utsc.utoronto.ca
416-208-2938

 @UofTNews

http://www.utoronto.ca 

Don Campbell | EurekAlert!

More articles from Physics and Astronomy:

nachricht Moon's crust underwent resurfacing after forming from magma ocean
22.11.2017 | University of Texas at Austin

nachricht NASA's James Webb Space Telescope completes final cryogenic testing
21.11.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

UCLA engineers use deep learning to reconstruct holograms and improve optical microscopy

22.11.2017 | Medical Engineering

Watching atoms move in hybrid perovskite crystals reveals clues to improving solar cells

22.11.2017 | Materials Sciences

New study points the way to therapy for rare cancer that targets the young

22.11.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>