Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wall-less Hall thruster may power future deep space missions

28.10.2015

French scientists have experimentally optimized the operation of the first wall-less Hall thruster prototype, a novel electric rocket engine design suitable for long-duration, deep space missions

Hall thrusters are advanced electric rocket engines primarily used for station-keeping and attitude control of geosynchronous communication satellites and space probes. Recently, the launch of two satellites based on an all-electric bus has marked the debut of a new era - one in which Hall thrusters could be used not just to adjust orbits, but to power the voyage as well. Consuming 100 million times less propellant or fuels than conventional chemical rockets, a Hall thruster is an attractive candidate for exploring Mars, asteroids and the edge of the solar system. By saving fuel the thruster could leave room for spacecraft and send a large amount of cargo in support of space missions. However, the current lifespan of Hall thrusters, which is around 10,000 operation hours, is too short for most space explorations, which require at least 50,000 operation hours.


PPS-FLEX firing in wall-less mode in the PIVOINE-2g vacuum chamber.

Credit: CNRS/LAPLACE and CNRS/ICARE

To prolong the lifespan of Hall thrusters, a team of researchers from the French National Center for Scientific Research have experimentally optimized the operation of a novel, wall-less thruster prototype developed a year ago by the same team. The preliminary performance results were satisfactory, the team said, and pave the way toward developing a high-efficiency wall-less Hall thruster suitable for long-duration, deep space missions. The researchers present their work in a paper published this week in the journal Applied Physics Letters, from AIP Publishing.

Hall thrusters are electric rocket engines using a super high speed (on the order of 45,000 mph) stream of plasma to push spacecraft forward. Their operating principle relies on the creation of a low-pressure quasi-neutral plasma discharge in a crossed magnetic and electric field configuration. The propellant gas, typically xenon, is ionized by electrons trapped in the magnetic field.

In the conventional Hall thruster configuration, the magnetized discharge is confined to an annular dielectric cavity with the anode at one end, where the gas is injected, and an external cathode injecting electrons. Ionization of the propellant gas occurs inside the cavity, with ions accelerated by the electric field that stretches from the interior to the exterior of the cavity.

"The major drawback of Hall thrusters is that the discharge channel wall materials largely determine the discharge properties, and consequently, the performance level and the operational time," said Julien Vaudolon, the primary researcher in the Electric Propulsion team led by Professor Stéphane Mazouffre in the ICARE-CNRS Laboratory, France.

Vaudolon explained that the wall materials play a role in the plasma properties mainly through secondary electron emission, a phenomenon where high-energy ions hit the channel wall surface and induce the emission of secondary electrons. Additionally, the erosion of the discharge cavity walls due to bombardment of high-energy ions shortens the thruster's lifetime.

"Thus, an effective approach to avoid the interaction between the plasma and the discharge channel wall is to move the ionization and acceleration regions outside the cavity, which is an unconventional design named a Wall-Less Hall Thruster," Vaudolon said.

Last year, the team developed a small-scale, wall-less thruster prototype based on a classical Hall thruster. At first the researchers simply moved the anode to the channel exhaust plane. However, this first wall-less thruster turned out to be a low-performance device, as the magnetic field lines are perpendicular to the thruster axis, which cross the anode placed at the channel exhaust plane.

"Magnetic fields are used to trap hot electrons injected from the external cathode and prevent them from reaching the anode," Vaudolon said. "Basically an electron travels along the magnetic field line. If the magnetic field lines cross the anode, a large portion of hot electrons will be collected at the anode and won't take part in the ionization of the xenon atoms, resulting in high discharge current, low ionization degree, and consequently, low performance level."

To optimize the wall-less prototype and make the magnetic lines avoid the anode surface, the team rotated the magnetic barrier by 90 degrees, so that it injected the magnetic field lines parallel with the axial direction. The anode was still placed at the channel exhaust plane, but its shape is curved to avoid any interaction with the magnetic field lines.

Based on the PPS-Flex, a 1.5 kilowatts class thruster designed by the GREM3 Team at LAPLACE Laboratory, France and capable of modifying the magnetic field topology over a broad range of configurations, the team has validated their optimization strategies by modifying several parts and parameters of the thruster. The measurement of some operation parameters such as the thrust level, anode efficiency and far-field ion properties displayed a satisfactory performance level. However, Vaudolon said, some further optimization is still needed for the thruster's efficient operation at high power.

"The wall-less thruster allows scientists to observe regions of the plasma previously hidden behind the channel walls. Now the plasma region can be observed and diagnosed using probes and/or laser diagnostic tools," Vaudolon said. He also pointed out that the access to key regions of the plasma facilitates a thorough investigation of plasma instability and small-scale turbulence for a better understanding of the discharge physics and anomalous electron transport.

"Despite decades of research, the physics of Hall thrusters is still far from being understood, and the device characterization methods still rely on trials and testing, leading to expensive efforts," Vaudolon said. "The major difficulty in developing predictive simulations lies in modeling the interaction between plasma and wall. The wall-less design would be an effective solution, potentially making future predictive simulations feasible and reliable."

After the lessons learned from the testing of the PPS-Flex version, the team's next step is to design a dedicated wall-less Hall thruster and fully exploit the possibilities offered by a wall-less architecture.

###

The article "Optimization of a wall-less Hall thruster," is authored by Julien Vaudolon, Stéphane Mazouffre, Carole Hénaux, Dominique Harribey and Alberto Rossi. It will be published in the journal Applied Physics Letters on October 27, 2015 (DOI: 10.1063/1.4932196). After that date, it can be accessed at: http://scitation.aip.org/content/aip/journal/apl/107/17/10.1063/1.4932196

The authors of this study are affiliated with the French National Center for Scientific Research, ICARE Laboratory and LAPLACE Laboratory.

ABOUT THE JOURNAL

Applied Physics Letters features concise, rapid reports on significant new findings in applied physics. The journal covers new experimental and theoretical research on applications of physics phenomena related to all branches of science, engineering, and modern technology. See: http://apl.aip.org

Media Contact

Jason Socrates Bardi
jbardi@aip.org
240-535-4954

 @jasonbardi

http://www.aip.org 

Jason Socrates Bardi | EurekAlert!

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>