Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

VISTA stares right through the Milky Way

04.02.2015

New infrared view of the Trifid Nebula reveals new variable stars far beyond

As one of its major surveys of the southern sky, the VISTA telescope at ESO's Paranal Observatory in Chile is mapping the central regions of the Milky Way in infrared light to search for new and hidden objects. This VVV survey (standing for VISTA Variables in the Via Lactea) is also returning to the same parts of the sky again and again to spot objects that vary in brightness as time passes.


This small extract from the VISTA VVV survey of the central parts of the Milky Way shows the famous Trifid Nebula to the right of centre. It appears as faint and ghostly at these infrared wavelengths when compared to the familiar view at visible wavelengths. This transparency has brought its own benefits -- many previously hidden background objects can now be seen clearly. Among these are two newly discovered Cepheid variable stars, the first ever spotted on the far side of the galaxy near its central plane.

Credit: ESO/VVV consortium/D. Minniti

A tiny fraction of this huge VVV dataset has been used to create this striking new picture of a famous object, the star formation region Messier 20, usually called the Trifid Nebula, because of the ghostly dark lanes that divide it into three parts when seen through a telescope.

The familiar pictures of the Trifid show it in visible light, where it glows brightly in both the pink emission from ionised hydrogen and the blue haze of scattered light from hot young stars. Huge clouds of light-absorbing dust are also prominent. But the view in the VISTA infrared picture is very different. The nebula is just a ghost of its usual visible-light self. The dust clouds are far less prominent and the bright glow from the hydrogen clouds is barely visible at all. The three-part structure is almost invisible.

In the new image, as if to compensate for the fading of the nebula, a spectacular new panorama comes into view. The thick dust clouds in the disc of our galaxy that absorb visible light allow through most of the infrared light that VISTA can see. Rather than the view being blocked, VISTA can see far beyond the Trifid and detect objects on the other side of the galaxy that have never been seen before.

By chance this picture shows a perfect example of the surprises that can be revealed when imaging in the infrared. Apparently close to the Trifid in the sky, but in reality about seven times more distant [1], a newly discovered pair of variable stars has been found in the VISTA data. These are Cepheid variables, a type of bright star that is unstable and slowly brightens and then fades with time. This pair of stars, which the astronomers think are the brightest members of a cluster of stars, are the only Cepheid variables detected so far that are close to the central plane, but on the far side of the galaxy. They brighten and fade over a period of eleven days.

Notes

[1] The Trifid Nebula lies about 5200 light-years from Earth, the centre of the Milky Way is about 27 000 light-years away, in almost the same direction, and the newly discovered Cepheids are at a distance of about 37 000 light-years.

More information

These results were presented in a paper entitled "Discovery of a Pair of Classical Cepheids in an Invisible Cluster Beyond the Galactic Bulge", by I. Dekany et al., recently published in Astrophysical Journal Letters.

The team is composed of I. Dékány (Millennium Institute of Astrophysics, Santiago, Chile; Universidad Católica de Chile, Santiago, Chile), D. Minniti (Universidad Andres Bello, Santiago, Chile; Millennium Institute of Astrophysics; Center for Astrophysics and Associated Technologies; Vatican Observatory, Vatican City State, Italy), G. Hajdu (Universidad Católica de Chile; Millennium Institute of Astrophysics), J. Alonso-García (Universidad Católica de Chile; Millennium Institute of Astrophysics), M. Hempel (Universidad Católica de Chile), T. Palma (Millennium Institute of Astrophysics; Universidad Católica de Chile;), M. Catelan (Universidad Católica de Chile; Millennium Institute of Astrophysics), W. Gieren (Millennium Institute of Astrophysics; Universidad de Concepción, Chile) and D. Majaes (Saint Mary's University, Halifax, Canada; Mount Saint Vincent University, Halifax, Canada).

ESO is the foremost intergovernmental astronomy organisation in Europe and the world's most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world's largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is a major partner in ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre European Extremely Large Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

###

Links

* Research paper: http://www.eso.org/public/archives/releases/sciencepapers/eso1504/eso1504a.pdf

* Photos of VISTA: http://www.eso.org/public/images/archive/category/surveytelescopes/

* The VISTA Variable in the Via Lactea survey: http://en.wikipedia.org/wiki/Vista_Variables_in_the_Via_Lactea

Contacts

Richard Hook
ESO education and Public Outreach Department
Garching bei München, Germany
Tel: +49 89 3200 6655
Cell: +49 151 1537 3591
Email: rhook@eso.org

Dr. Carolin Liefke | EurekAlert!

Further reports about: Chile ESO Milky Way Network Outreach Telescope Trifid Nebula astrophysics clouds dust clouds light-years visible light

More articles from Physics and Astronomy:

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>