Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using Mirrors to Improve the Quality of Light Particles

11.09.2017

Scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute have succeeded in dramatically improving the quality of individual photons generated by a quantum system. The scientists have successfully put a 10-year-old theoretical prediction into practice. With their paper, published recently in Physical Review X, they have taken an important step towards future applications in quantum information technology.

For a number of years, scientists have been working on using electron spins to store and process information. A possible approach is to use a quantum system in which the quantum state of the electron spin is linked to that of the emitted light particles (photons).


A property of NV centers in diamond is that the states of their electron spins can be determined from the photons they emit.

Image: University of Basel, Department of Physics

Nitrogen vacancy centers (NV centers) are considered a proven structure for this approach, allowing electron spins to be read and manipulated easily. These NV centers are natural defects in the crystal lattice of diamond, over which researchers have gained control over the last decades.

Better photons are needed

NV centers are particularly interesting in the field of quantum information processing, as they emit individual photons that carry information about the state of their electron spin. These photons in turn can create quantum entanglement between various NV centers; this entanglement can be established even over large distances and can thus be used for data transmission.

However, for applications in quantum information technology, significant improvements will be needed in the quantity and above all the quality of the emitted photons, since so far only a fraction of the photons can be used to produce entanglement.

Successful optimization

Doctoral student Daniel Riedel has now succeeded in boosting the yield of useful photons from these NV centers from 3% to a current value of 50%. In addition, he has been able to almost double the rate at which the photons are emitted.

Riedel achieved these significant improvements by placing a nanofabricated piece of diamond, measuring just a few hundred nanometers across, between two tiny mirrors. It had already been described theoretically 10 years ago that the placement of NV centers inside a cavity ought to increase the yield of photons. Until now, however, no research group had managed to put this theory into practice.

The paper emerged as part of a doctoral thesis at the Swiss Nanoscience Institute’s PhD School, which was established in 2012. “We have overcome an important hurdle on the path towards the quantum internet,” says supervisor Professor Richard Warburton of the Department of Physics at the University of Basel.

Professor Patrick Maletinsky, who also supervised the work, adds: “The unique combination of expertise in the field of photonics, special diamond structures and nanofabrication here in Basel meant it was possible to overcome this 10-year-old challenge for the first time.”

Original source

Daniel Riedel, Immo Söllner, Brendan J. Shields, Sebastian Starosielec, Patrick Appel, Elke Neu, Patrick Maletinsky, and Richard J. Warburton
Deterministic Enhancement of Coherent Photon Generation from a Nitrogen-Vacancy Center in Ultrapure Diamond
Physical Review X (2017), doi: 10.1103/PhysRevX.7.031040

Further information

Prof. Dr. Richard Warburton, University of Basel, Department of Physics, Tel. +41 61 207 35 60, email: richard.warburton@unibas.ch

Prof. Dr. Patrick Maletinsky, University of Basel, Department of Physics, Tel. +41 61 207 37 63, email: patrick.maletinsky@unibas.ch

Weitere Informationen:

https://www.unibas.ch/en/News-Events/News/Uni-Research/Using-Mirrors-to-Improve-...

Cornelia Niggli | Universität Basel

More articles from Physics and Astronomy:

nachricht Explosive birth of stars swells galactic cores
11.09.2017 | National Institutes of Natural Sciences

nachricht High-speed quantum memory for photons
11.09.2017 | University of Basel

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Using Mirrors to Improve the Quality of Light Particles

Scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute have succeeded in dramatically improving the quality of individual photons generated by a quantum system. The scientists have successfully put a 10-year-old theoretical prediction into practice. With their paper, published recently in Physical Review X, they have taken an important step towards future applications in quantum information technology.

For a number of years, scientists have been working on using electron spins to store and process information. A possible approach is to use a quantum system in...

Im Focus: High-speed Quantum Memory for Photons

Physicists from the University of Basel have developed a memory that can store photons. These quantum particles travel at the speed of light and are thus suitable for high-speed data transfer. The researchers were able to store them in an atomic vapor and read them out again later without altering their quantum mechanical properties too much. This memory technology is simple and fast and it could find application in a future quantum Internet. The journal Physical Review Letters has published the results.

Even today, fast data transfer in telecommunication networks employs short light pulses. Ultra broadband technology uses optical fiber links through which...

Im Focus: Discovery of the most accelerated binary pulsar

Fifty years after Jocelyn Bell discovered the first pulsar, students are no longer going through reams of paper from pen chart recorders but instead search through 1,000s of terabytes of data to find these enigmatic pulsating radio stars. The most extreme binary pulsar system so far, with accelerations of up to 70 g has been discovered by researchers at the Max Planck Institute for Radio Astronomy (MPIfR) in Bonn. At their closest approach the orbit of the pulsar and its companion neutron star would easily fit inside the radius of the Sun.

Although most of the more than 2,500 pulsars known are solitary objects, a few are found in tight binary systems. The discovery of the first of these, the...

Im Focus: How receptors for medicines work inside cells

G protein-coupled receptors are the key target of a large number of drugs. Würzburg scientists have now been able to show more precisely how these receptors act in the cell interior.

The human genome encodes hundreds of G protein-coupled receptors (GPCRs). These form the largest group of receptors through which hormones and...

Im Focus: Like a Revolving Door: How Shuttling Proteins Operate Nuclear Pores

Nuclear pore complexes are tiny channels where the exchange of substances between the cell nucleus and the cytoplasm takes place. Scientists at the University of Basel report on startling new research that might overturn established models of nuclear transport regulation. Their study published in the Journal of Cell Biology reveals how shuttling proteins known as importins control the function of nuclear pores – as opposed to the view that nuclear pores control the shuttling of importins.

Genetic information is protected in the cell nucleus by a membrane that contains numerous nuclear pores. These pores facilitate the traffic of proteins known...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

IVAM’s LaserForum visits the Swiss canton of St. Gallen with the topic ultrashort pulse lasers

06.09.2017 | Event News

Is the world on the brink of a computing revolution? – Quantum computing at the 5th HLF

31.08.2017 | Event News

 
Latest News

Cleaning is just the beginning

11.09.2017 | Trade Fair News

Virtual technology center for efficient solar cells

11.09.2017 | Power and Electrical Engineering

New VDI standards established for cleanroom technology

11.09.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>