Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using a microscopic ring to produce pulsed light

07.01.2016

Researchers funded by the Swiss National Science Foundation have made a chip-based device that can generate a laser signal with frequencies spaced in a comb-like fashion. Their work could be used in telecommunications applications and in chemical analysis.

In general, light and water waves alike stretch out and dissipate as they move further and further away from their source. However, there is a type of wave that maintains its shape as it propagates: solitons.

Researchers funded by the Swiss National Science Foundation (SNSF) have successfully produced optical solitons – light waves that retain their shape – using a microresonator. The light is composed of a range of frequencies separated very precisely by the same distance, producing what physicists call a frequency comb, since it resembles the regular spacing between the teeth of a comb.

A new record

To generate the solitons, researchers at EPFL and the Russian Quantum Center in Moscow have used microresonators. “These microscopic ring-shaped structures are made from very fine silicon nitride,” explains Tobias Kippenberg, the EPFL group leader.

“They are capable of storing for a few nanoseconds the light of the laser to which they are coupled. This period of time is sufficient for the light to circumnavigate the ring thousands of times and to accumulate there, which strongly increases the intensity of the light.” The interaction between the microresonator and the light becomes non-linear. The laser, which is normally continuous by nature, is converted into ultra-short pulses: solitons.

By adapting the parameters for manufacturing microresonators, the EPFL researchers additionally managed to generate a so-called soliton Cherenkov radiation. This broadens the frequency spectrum: the comb contains a greater number of teeth. Published in Science (*), the results have set a new record for this type of structure. The frequencies generated now extend over two thirds of an octave compared with the frequency of the laser.

Patent pending

“These results represent a promising advance for applications that require many widely spaced frequencies,” says Kippenberg. In the context of optical communications, one single laser would be enough to create a range of individual frequencies which could separately carry information. Chemical spectroscopy and atomic timekeeping are other potential fields of application. “We have filed a patent, since there is potential for further technological developments,” says Kippenberg.

Frequency combs, a discovery by Theodor Hänsch and John Hall that won them a Nobel Prize for Physics in 2005, are generally created using very large lasers. “The ability to produce optical frequency combs using small chips represents an interesting advance for making them more user-friendly,” says Tobias Kippenberg.

(*) V. Brasch et al.: Photonic chip–based optical frequency comb using soliton Cherenkov radiation, Science 10.1126/science.aad4811 (2015).

(Available to journalists as a PDF file from the SNSF: com@snf.ch)

Contact
Prof. Tobias J. Kippenberg
Laboratory of Photonics and Quantum Measurements
EPFL
1015 Lausanne
Tel: + 41 21 693 44 28 or +41 79 535 00 16
(Reachable from 7 January, 11.30 a.m.)
Email: tobias.kippenberg@epfl.ch

This press release can be found on the website of the SNSF:

Weitere Informationen:

http://www.snf.ch/en/researchinFocus/newsroom/Pages/news-160107-press-release-mi...

Media - Abteilung Kommunikation | idw - Informationsdienst Wissenschaft

Further reports about: EPFL QUANTUM SNF SNSF microresonators microscopic optical communications solitons water waves waves

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>