Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Uncertainty relation in quantum information theory

14.07.2015

Physicists in Vienna/Austria, Nagoya/Japan and Brisbane/Australia confirmed an uncertainty relation as a trade-off of information between two quantum measurements.

Information is a key quantity in science and plays a significant role in many economic sectors such as communication technologies, cryptography, or data storage. In quantum communication and information technology the transfer and encryption of information is studied.


Research reactor at the Institute of Atomic and Subatomic Physics

TU Wien


Concept of the experiment

TU Wien

In the quantum regime, phenomena such as the Heisenberg’s Uncertainty Principle have to be taken into account as well. Experiments at TU Wien in collaboration with theoreticians from Japan and Australia now have a newer, closer look at the uncertainty with respect to information theory. Fundamentals of quantum physics are illuminated by the insights from information theory.

Heisenberg's Uncertainty Principle is one of the most fundamental tenets of quantum physics. It states that certain properties of quantum particles, such as position and momentum, cannot be determined simultaneously with arbitrary precision. A particle can be in different places at the same time, and take different velocities simultaneously.

The question of where and how fast the particles "really" move is meaningless – nature simply does not contain any information about it – one might say the particles do not know themselves. While this is the modern understanding of the Uncertainty Principle, historically the emphasis was on a different aspect: the change in a system caused by the very act of observing it.

If you want to measure, for example, the location of an electron with the help of light waves very precisely, then you have to use very short light waves. However, short-wavelength light has a lot of energy, so that the momentum of the particle is changed considerably. The more accurately you want to measure the position, the more you disturb the momentum. "Unfortunately, these two representations of the uncertainty in everyday physics, but also in textbooks, are often confused, although they describe totally different physical circumstances," says Stephan Sponar from the Institute of Atomic and Subatomic Physics at TU Wien.

Last year, physicists in Australia, the US and Japan, by using the so-called information entropy, precisely analyzed uncertainty in terms of “knowledge" and "predictability" and established a trade-off relation between them. These concepts play a central role in the theory of communication, engineering and computer science. "Therefore, it is perfectly natural to find a formulation of the Heisenberg uncertainty principle, which is based on principles of information theory," says Bülent Demirel.

The research group of Prof. Hasegawa at TU Wien tested this new formulation by a neutron optical method, using the research reactor at the Institute of Atomic and Subatomic Physics. For the experiment, the spins of neutrons produced in nuclear fission were determined by successive measurements. Unlike in classical computer science, where classical bits can have only the values 0 or 1, the spin represents a so-called quantum bit (qubit) of information. For spin measurements, an uncertainty principle applies, just like for position and momentum. One cannot simultaneously measure the spin in the X-direction and in the Y-direction precisely. Thus, one can view the neutron spins as a carrier of qubits and thus test the information-theoretical uncertainty.

It was possible to test the trade-off relation for “knowledge" and "predictability". The higher the knowledge of spin in the X-direction acquired by the measurement of the qubit, the lower was the predictability of its spin in the Y-direction, and vice versa. Quantum information prohibits having both high knowledge and high predictability. Further, protocols for quantum error correction were applied to determine how much information loss is reversible and can therefore be regained and how much information will be inevitably destroyed by a measurement. The correctness of the postulated relationship between knowledge and predictability was clearly demonstrated, with the utmost precision. This work will be presented by the research team in the journal "Physical Review Letters" and has been chosen as "Editor's Suggestion".

The new results quantify the limits of the transmission of information through quantum channels and thus are very important in many areas of quantum information technology. Noisy communication channels, information loss along such channels, and the quantum encryption of data may be better understood.

Original publication: http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.115.030401

Contact:
Associate Prof. Dipl.-Ing. Dr. Yuji HASEGAWA
Institute of Atomic and Subatomic Physics
TU Wien
+43-1-58801-141490
hasegawa@ati.ac.at

Weitere Informationen:

Original publication: http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.115.030401

Dr. Florian Aigner | Technische Universität Wien

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>