Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Uncertainty relation in quantum information theory

14.07.2015

Physicists in Vienna/Austria, Nagoya/Japan and Brisbane/Australia confirmed an uncertainty relation as a trade-off of information between two quantum measurements.

Information is a key quantity in science and plays a significant role in many economic sectors such as communication technologies, cryptography, or data storage. In quantum communication and information technology the transfer and encryption of information is studied.


Research reactor at the Institute of Atomic and Subatomic Physics

TU Wien


Concept of the experiment

TU Wien

In the quantum regime, phenomena such as the Heisenberg’s Uncertainty Principle have to be taken into account as well. Experiments at TU Wien in collaboration with theoreticians from Japan and Australia now have a newer, closer look at the uncertainty with respect to information theory. Fundamentals of quantum physics are illuminated by the insights from information theory.

Heisenberg's Uncertainty Principle is one of the most fundamental tenets of quantum physics. It states that certain properties of quantum particles, such as position and momentum, cannot be determined simultaneously with arbitrary precision. A particle can be in different places at the same time, and take different velocities simultaneously.

The question of where and how fast the particles "really" move is meaningless – nature simply does not contain any information about it – one might say the particles do not know themselves. While this is the modern understanding of the Uncertainty Principle, historically the emphasis was on a different aspect: the change in a system caused by the very act of observing it.

If you want to measure, for example, the location of an electron with the help of light waves very precisely, then you have to use very short light waves. However, short-wavelength light has a lot of energy, so that the momentum of the particle is changed considerably. The more accurately you want to measure the position, the more you disturb the momentum. "Unfortunately, these two representations of the uncertainty in everyday physics, but also in textbooks, are often confused, although they describe totally different physical circumstances," says Stephan Sponar from the Institute of Atomic and Subatomic Physics at TU Wien.

Last year, physicists in Australia, the US and Japan, by using the so-called information entropy, precisely analyzed uncertainty in terms of “knowledge" and "predictability" and established a trade-off relation between them. These concepts play a central role in the theory of communication, engineering and computer science. "Therefore, it is perfectly natural to find a formulation of the Heisenberg uncertainty principle, which is based on principles of information theory," says Bülent Demirel.

The research group of Prof. Hasegawa at TU Wien tested this new formulation by a neutron optical method, using the research reactor at the Institute of Atomic and Subatomic Physics. For the experiment, the spins of neutrons produced in nuclear fission were determined by successive measurements. Unlike in classical computer science, where classical bits can have only the values 0 or 1, the spin represents a so-called quantum bit (qubit) of information. For spin measurements, an uncertainty principle applies, just like for position and momentum. One cannot simultaneously measure the spin in the X-direction and in the Y-direction precisely. Thus, one can view the neutron spins as a carrier of qubits and thus test the information-theoretical uncertainty.

It was possible to test the trade-off relation for “knowledge" and "predictability". The higher the knowledge of spin in the X-direction acquired by the measurement of the qubit, the lower was the predictability of its spin in the Y-direction, and vice versa. Quantum information prohibits having both high knowledge and high predictability. Further, protocols for quantum error correction were applied to determine how much information loss is reversible and can therefore be regained and how much information will be inevitably destroyed by a measurement. The correctness of the postulated relationship between knowledge and predictability was clearly demonstrated, with the utmost precision. This work will be presented by the research team in the journal "Physical Review Letters" and has been chosen as "Editor's Suggestion".

The new results quantify the limits of the transmission of information through quantum channels and thus are very important in many areas of quantum information technology. Noisy communication channels, information loss along such channels, and the quantum encryption of data may be better understood.

Original publication: http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.115.030401

Contact:
Associate Prof. Dipl.-Ing. Dr. Yuji HASEGAWA
Institute of Atomic and Subatomic Physics
TU Wien
+43-1-58801-141490
hasegawa@ati.ac.at

Weitere Informationen:

Original publication: http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.115.030401

Dr. Florian Aigner | Technische Universität Wien

More articles from Physics and Astronomy:

nachricht Meteoritic stardust unlocks timing of supernova dust formation
19.01.2018 | Carnegie Institution for Science

nachricht Artificial agent designs quantum experiments
19.01.2018 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>