Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The uncalculability of electron systems

24.08.2009
Theoretical physicists of the Max Planck Institute of Quantum Optics reveal limitations of Density Functional Theory using Quantum Information Theory tools.

The electric and magnetic properties of solids are impossible to calculate exactly: The complex interactions of the many electrons which underly these phenomena cannot be computed even by the most powerful classical computers. Here, the central task is to determine the ground state of the electrons moving in the field of the positively charged nuclei.

The most widely used method for treating such systems is Density Functional Theory, which reduces the many-body problem to a single particle interaction. As Dr. Norbert Schuch, scientist in the theory division of Prof. Ignacio Cirac at the Max Planck Institute of Quantum Optics in Garching, and Prof. Frank Verstraete from the University of Vienna, report in Nature Physics (DOI: 10.1038/NPHYS1370), there exist however fundamental limitations to the applicability of this theory. The scientists succeeded by using methods developed in Quantum Information Theory, demonstrating that these methods can give deep insights beyond the development of quantum computers.

One of the central problems in quantum mechanics is to determine the ground state of a complex system consisting of many interacting electrons. An example taken from chemistry is the geometry of large molecules: the spatial arrangement of the atoms in the molecule is the one for which the energy of the electrons moving in the field of the nuclei is minimized. Thus, by determining the ground state of the electrons one can infer the three-dimensional structure of the molecule. The same holds for solids: Their electric and magnetic properties, including exotic phenomena such as high-temperature superconductivity, ultimately originate from the motion of the electrons in the periodic potential of the positively charged nuclei.

Density Functional Theory (DFT) makes use of the fact that the complex interaction of the electrons is the same in all these cases and encapsulates it in some kind of "black box", the so-called "universal functional". By using this functional, every many-electron problem can in principle be rephrased as a single-particle problem which can then be solved relatively easily. The challenge consists in finding this functional, and in practice, often more specific problem-dependent approximations are being used.

In their work, Schuch and Verstraete investigate the limits of the applicability of DFT: Is it possible to find this universal functional which would considerably simplify the treatment of many-electron systems - or are there fundamental bounds which prohibit this? To this end, they use methods of quantum complexity theory, a subarea of quantum information science, which aims at classifying problems according to their difficulty, especially concerning the question whether they can be efficiently solved by quantum computers. Whereas e.g. quantum computers can often simulate the time evolutions of quantum systems efficiently, computing ground states of complex quantum systems poses a hard problem even for a quantum computer.

In their work, Schuch and Verstraete prove on the one hand that ground states of many-electron systems are hard to compute even for quantum computers. On the contrary, they show that these problems can be solved efficiently even by classical computers using Density Functional Theory, given the universal functional is known. This shows that in these cases it is fundamentally impossible to compute the functional and explains the need for more specific approximations. This exhibits that despite its broad applicability, there are fundamental limitations to Density Functional Theory.

[Olivia Meyer-Streng/Norbert Schuch]

Original publication:
Norbert Schuch and Frank Verstraete
"Computational Complexity of interacting electrons and fundamental limitations
of Density Functional Theory"
Nature Physics, Advance Online Publication, DOI: 10.1038/NPHYS1370
Contact:
Dr. Norbert Schuch
Max Planck Institute of Quantum Optics
Theory Division
Hans-Kopfermann-Straße 1
85748 Garching
Phone: +49 - 89 / 32905 105
Fax: +49 - 89 / 32905 200
E-mail: norbert.schuch@mpq.mpg.de
Dr. Olivia Meyer-Streng
Max Planck Institute of Quantum Optics
Press & Public Relations
Phone: +49 - 89 / 32905 213
Fax: +49 - 89 / 32905 200
E-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | idw
Further information:
http://www.mpq.mpg.de

More articles from Physics and Astronomy:

nachricht Applicability of dynamic facilitation theory to binary hard disk systems
08.12.2016 | Nagoya Institute of Technology

nachricht Will Earth still exist 5 billion years from now?
08.12.2016 | KU Leuven

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>