Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The uncalculability of electron systems

24.08.2009
Theoretical physicists of the Max Planck Institute of Quantum Optics reveal limitations of Density Functional Theory using Quantum Information Theory tools.

The electric and magnetic properties of solids are impossible to calculate exactly: The complex interactions of the many electrons which underly these phenomena cannot be computed even by the most powerful classical computers. Here, the central task is to determine the ground state of the electrons moving in the field of the positively charged nuclei.

The most widely used method for treating such systems is Density Functional Theory, which reduces the many-body problem to a single particle interaction. As Dr. Norbert Schuch, scientist in the theory division of Prof. Ignacio Cirac at the Max Planck Institute of Quantum Optics in Garching, and Prof. Frank Verstraete from the University of Vienna, report in Nature Physics (DOI: 10.1038/NPHYS1370), there exist however fundamental limitations to the applicability of this theory. The scientists succeeded by using methods developed in Quantum Information Theory, demonstrating that these methods can give deep insights beyond the development of quantum computers.

One of the central problems in quantum mechanics is to determine the ground state of a complex system consisting of many interacting electrons. An example taken from chemistry is the geometry of large molecules: the spatial arrangement of the atoms in the molecule is the one for which the energy of the electrons moving in the field of the nuclei is minimized. Thus, by determining the ground state of the electrons one can infer the three-dimensional structure of the molecule. The same holds for solids: Their electric and magnetic properties, including exotic phenomena such as high-temperature superconductivity, ultimately originate from the motion of the electrons in the periodic potential of the positively charged nuclei.

Density Functional Theory (DFT) makes use of the fact that the complex interaction of the electrons is the same in all these cases and encapsulates it in some kind of "black box", the so-called "universal functional". By using this functional, every many-electron problem can in principle be rephrased as a single-particle problem which can then be solved relatively easily. The challenge consists in finding this functional, and in practice, often more specific problem-dependent approximations are being used.

In their work, Schuch and Verstraete investigate the limits of the applicability of DFT: Is it possible to find this universal functional which would considerably simplify the treatment of many-electron systems - or are there fundamental bounds which prohibit this? To this end, they use methods of quantum complexity theory, a subarea of quantum information science, which aims at classifying problems according to their difficulty, especially concerning the question whether they can be efficiently solved by quantum computers. Whereas e.g. quantum computers can often simulate the time evolutions of quantum systems efficiently, computing ground states of complex quantum systems poses a hard problem even for a quantum computer.

In their work, Schuch and Verstraete prove on the one hand that ground states of many-electron systems are hard to compute even for quantum computers. On the contrary, they show that these problems can be solved efficiently even by classical computers using Density Functional Theory, given the universal functional is known. This shows that in these cases it is fundamentally impossible to compute the functional and explains the need for more specific approximations. This exhibits that despite its broad applicability, there are fundamental limitations to Density Functional Theory.

[Olivia Meyer-Streng/Norbert Schuch]

Original publication:
Norbert Schuch and Frank Verstraete
"Computational Complexity of interacting electrons and fundamental limitations
of Density Functional Theory"
Nature Physics, Advance Online Publication, DOI: 10.1038/NPHYS1370
Contact:
Dr. Norbert Schuch
Max Planck Institute of Quantum Optics
Theory Division
Hans-Kopfermann-Straße 1
85748 Garching
Phone: +49 - 89 / 32905 105
Fax: +49 - 89 / 32905 200
E-mail: norbert.schuch@mpq.mpg.de
Dr. Olivia Meyer-Streng
Max Planck Institute of Quantum Optics
Press & Public Relations
Phone: +49 - 89 / 32905 213
Fax: +49 - 89 / 32905 200
E-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | idw
Further information:
http://www.mpq.mpg.de

More articles from Physics and Astronomy:

nachricht Tiny lasers from a gallery of whispers
20.09.2017 | American Institute of Physics

nachricht New quantum phenomena in graphene superlattices
19.09.2017 | Graphene Flagship

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>