Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UMass Amherst physicists contribute to dark matter detector success

22.02.2018

In the quest for evidence of dark matter, physicist Andrea Pocar of UMass Amherst and his students have played a role in designing and building a part of the argon-based DarkSide-50 detector in Italy.

In researchers' quest for evidence of dark matter, physicist Andrea Pocar of the University of Massachusetts Amherst and his students have played an important role in designing and building a key part of the argon-based DarkSide-50 detector located underground in Italy's Gran Sasso National Laboratory.


Undergraduate Arthur Kurlej welding the grid electrode onto its support ring inside the radon-suppressed clean room in the underground laboratory at Gran Sasso, Italy. Kurlej's advisor, physics professor Andrea Pocar, says undergraduates were notably helpful in designing and making this component of the dark matter detector there, known as DarkSide-50.

Credit: UMass Amherst

This week, scientists from around the world who gathered at the University of California, Los Angeles, at the Dark Matter 2018 Symposium learned of new results in the search for evidence of the elusive material in Weakly Interacting Massive Particles (WIMPs) by the DarkSide-50 detector. WIMPs have been candidate dark matter particles for decades, but none have been found to date.

Pocar says the DarkSide detector has demonstrated the great potential of liquid argon technology in the search for so-called "heavy WIMPs," those with mass of about 100 to 10,000 times the mass of a proton. Further, he adds, the double-phase argon technique used by the DarkSide-50 detector has unexpected power in the search for "low-mass WIMPs," with only 1-10 times the mass of a proton.

He adds, "The component we made at UMass Amherst, with very dedicated undergraduates involved from the beginning, is working very well. It's exciting this week to see the first report of our success coming out at the symposium." His graduate student Alissa Monte, who has studied surface and radon-related backgrounds using DarkSide-50, will present a poster at the UCLA meeting.

Pocar says, "There is a vibrant community of researchers around the world conducting competing experiments in this 'low mass' WIMP area. Over the past two years we collected data for a measurement we didn't expect to be able to make. At this point we are in a game we didn't think we could be in. We are reporting the high sensitivity we have achieved with the instrument, which is performing better than expected." Sensitivity refers to the instrument's ability to distinguish between dark matter and background radiation.

Dark matter, Pocar explains, represents about 25 percent of the energy content of the universe and while it has mass that can be inferred from gravitational effects, physicists have great difficulty detecting and identifying it because it hardly interacts, if at all, with "regular" matter through other forces. "Dark matter doesn't seem to want to interact much at all with the matter we know about," the physicist notes.

The DarkSide-50 detector uses 50 kg (about 110 lbs.) of liquid argon in a vat, with a small pocket of argon gas at the top, Pocar explains, as a target to detect WIMPs. The researchers hope for a WIMP to hit the nucleus of an argon atom in the tank, which then can be detected by the ionization produced by the nuclear recoil in the surrounding argon medium. Some of the ionization signal, proportional to the energy deposited inside the detector, is collected by applying an electric field to the target, he explains.

A flash of light is also produced in the argon with ionization, Pocar says. For high-enough energy events, the light pulse is bright enough to be used to tell the difference in "signature" between a nuclear recoil like that induced by a WIMP, and electron recoils induced by background or environmental radioactivity.

Pocar's lab designed, made and installed one of the electrodes that apply the electric field. He says, "For low-mass WIMPs, the amount of energy transmitted to the nucleus of argon by a WIMP is incredibly tiny. It's like hitting a billiard ball with a slow ping-pong ball. But a key thing for us is that now with two years of data, we have an exquisite understanding of our detector and we understand all non-WIMP events very well. Once you understand your detector, you can apply all that understanding in search mode, and plan for follow-up experiments."

Cristiano Galbiati, spokesperson for the DarkSide project, said at this week's symposium, "This is the best way to start the adventure of the future experiment DarkSide-20k. The results of DarkSide-50 provide great confidence on our technological choices and on the ability to carry out a compelling discovery program for dark matter. If a detector technology will ever identify convincingly dark matter induced events, this will be it."

###

The DarkSide-50 apparatus and experiments are supported by the Italian National Institute for Nuclear Physics, which operates the Gran Sasso Laboratory, the U.S. National Science Foundation, and funding agencies at collaborating institutions in Brazil, China, France, Poland, Spain and Russia.

Media Contact

Janet Lathrop
jlathrop@umass.edu
413-545-2989

 @umassscience

http://www.umass.edu 

 

Janet Lathrop | EurekAlert!

Further reports about: Laboratory Nuclear Physics dark matter detector electric field ionization

More articles from Physics and Astronomy:

nachricht One-way roads for spin currents
23.05.2018 | Singapore University of Technology and Design

nachricht Tunable diamond string may hold key to quantum memory
23.05.2018 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>