Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultraclean metal-like conductivity in semimetallic WP2

30.11.2017

Ultraclean metals show high conductivity with a high number of charge carriers, whereas semiconductors and semimetals with low charge carriers normally show a low conductivity. This scenario in semimetals can be changed if one can protect the carriers from scattering.


Left panel: A comparison of MR (2 K, 9 T) and conductivity (2 K, 0 T) of some well-known metals and semimetals. Metals with high conductivity have smaller MR and semimetals with smaller conductivities have larger MR. WP2 and MoP2 exhibit both very large conductivity as well as extremely high MR together. Right panel: The neighbouring Weyl points W1 and W2 in WP2 and MoP2 are of the same chirality making their annihilation with each other improbable. Upper panel: Schematic of the effect of hydrodynamics on carrier scattering.

© MPI CPfS / Nitesh Kumar

In a recent study, scientists from the Max Planck Institute for Chemical Physics of Solids in Dresden, in collaboration with High Field Magnet Laboratory (HFML-EMFL), Netherlands; Dresden High Magnetic Field Laboratory (HLD-EMFL) and Paul Scherrer Institute, Switzerland show extremely large conductivity in a semimetal, WP2.

The conductivity of ~ 3 x 108 W-1cm-1in WP2 at 2 K is comparable to highly conducting metals like potassium and copper of the similar purity.

The authors identified two major reasons for diminished scattering events in WP2 and the sister compound MoP2. First, these compounds contain robust Weyl points (difficult to annihilate), which means that backscattering events of charge carriers are less possible compared to conventional metals.

Second, the hydrodynamic effect at low temperatures ensures that the charge carriers are invisible to certain lattice defects and pass through them without getting scattered because they travel rather like a fluid.

The consequence in WP2 is a very large carrier mobility (4 x 106 cm2/Vs) and spectacular sub-millimetre mean free path (~ 106 unit cells of WP2). The mean free path is the average distance an electron can travel without getting scattered.

Because of the semimetallic nature of WP2 and MoP2, number of electrons and holes are almost equal, which additionally provide for a highly sensitive resistivity (or conductivity) towards the applied magnetic field which is otherwise not possible in a conventional metal with a single type of carriers.

Hence, we observe a record breaking conductivity and magnetoresistance (change in resistivity, 200 million % at 63 T field) present together in a compound, WP2.

The research at the Max Planck Institute for Chemical Physics of Solids (MPI CPfS) in Dresden aims to discover and understand new materials with unusual properties.

In close cooperation, chemists and physicists (including chemists working on synthesis, experimentalists and theoreticians) use the most modern tools and methods to examine how the chemical composition and arrangement of atoms, as well as external forces, affect the magnetic, electronic and chemical properties of the compounds.

New quantum materials, physical phenomena and materials for energy conversion are the result of this interdisciplinary collaboration.

The MPI CPfS (www.cpfs.mpg.de) is part of the Max Planck Society and was founded in 1995 in Dresden. It consists of around 280 employees, of which about 180 are scientists, including 70 doctoral students.

Autorenkontakt

 Claudia Felser
Direktor
Telefon: +49 351 4646-3000
Fax: +49 351 4646-3002
 
 
 
Nitesh Kumar
Post-doctoral research scientist
Telefon: +49 351 4646-3419

Topological Materials

 

Pressekontakt

Ingrid Rothe
Director's secretary
Telefon: +49 351 4646-3001
Fax: +49 351 4646-3002
 

Originalpublikation

1. Nitesh Kumar, Yan Sun, Nan Xu, Kaustuv Manna, Mengyu Yao, Vicky Süss, Inge Leermakers, Olga Young, Tobias Förster, Marcus Schmidt, Horst Borrmann, Binghai Yan, Uli Zeitler, Ming Shi, Claudia Felser, and Chandra Shekhar, "Extremely high magnetoresistance and conductivity in the type-II Weyl semimetals WP2 and MoP2," Nature Communications 8 (1), 1-8 (2017).
 

Dipl.-Übers. Ingrid Rothe | Max-Planck-Institut für Chemische Physik fester Stoffe
Further information:
https://www.cpfs.mpg.de/2849551/20171127

More articles from Physics and Astronomy:

nachricht Scientific achievements during the operation of Lomonosov satellite
18.12.2017 | Lomonosov Moscow State University

nachricht Quantum memory with record-breaking capacity based on laser-cooled atoms
18.12.2017 | Faculty of Physics University of Warsaw

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Single-photon detector can count to 4

18.12.2017 | Information Technology

Quantum memory with record-breaking capacity based on laser-cooled atoms

18.12.2017 | Physics and Astronomy

How much soil goes down the drain -- New data on soil lost due to water

18.12.2017 | Agricultural and Forestry Science

VideoLinks
B2B-VideoLinks
More VideoLinks >>>