Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultra-Thin, Tunable, Broadband Microwave Absorber May Advance Radar Cloaking

13.11.2015

Chinese scientists have developed an ultra-thin, tunable microwave absorber that can operate over a broad range of frequencies, demonstrating its potential in improving aircraft cloaking, warship stealth and broadband antenna

Microwave absorbers are a kind of material that can effectively absorb incident microwave energy to make objects invisible to radar; therefore they are commonly used in aircraft cloaking and warship stealth.


Intelligent Electronics Institute, Huazhong University of Sci&Tec.

For the first time, Stretching Transformation is applied to the unit cell pattern to expand the tunable bandwidth. With this technique, it is realizable to be thin and achieve broadband absorption simultaneously.

strec

Recently, as radar detection devices have been improved to detect the near-meter microwave length regime, scientists are working on high-performance absorbers that can cloak objects in the equivalent ultra-high frequency regime (from 300 megahertz to two gigahertz). However, conventional absorbers for the ultra-high regime are usually thick, heavy or have narrow absorption bandwidth, making them unsuitable for stealth missions.

To solve this problem, a team of researchers from Huazhong University of Science and Technology in China has developed an ultra-thin, tunable broadband microwave absorber for ultra-high frequency applications. This ultra-thin absorbing surface, called an active frequency-selective surface absorber, consists of arrays of patterned conductors loaded with two common types of circuit elements known as resistors and varactors.

The unit patterned cell absorbs microwaves and can also be actively controlled by stretching to expand the tunable bandwidth. In a paper published this week in the Journal of Applied Physics, from AIP Publishing, the researchers presented this work.

“Our proposed absorber was fabricated with a stretching transformation pattern, which is both thin and can absorb a wide range of frequencies for near-meter microwave application,” said Wenhua Xu, the primary researcher in the team led by Jianjun Jiang, a professor of School of Optical and Electronic Information at the Huazhong University of Science and Technology, China.

“Its absorption range covers a broad band from 0.7 to 1.9 gigahertz below -10 decibel, and the total thickness of the absorber is only 7.8 millimeters, which is one of the thinnest microwave absorbers reported.”

“Usually the thickness of conventional radar absorbers is a quarter the wavelength of the incident microwave. In the high frequency regime, take one gigahertz as an example, the thickness of the absorber would be around 7.5 centimeters, which is too thick and heavy to be used in aircrafts or warships. Our proposed absorber is almost ten times thinner than conventional ones,” Xu said.

Other alternative absorbers, such as metamaterial absorbers made from a resonant metallic structure printed on a dielectric substrate, though significantly thinner than the wavelengths absorbed, have a narrow working bandwidth.

To develop a novel absorber that is both thin and with broadband performance, Jiang’s team employed a type of thin, light periodic structure called a frequency-selective surface, which consists of an assembly of patterned conductors arranged in a two-dimensional array, usually backed by a thin dielectric, to reflect incident microwaves according to their frequency.

In the experiment, Jiang’s team fabricated a broadband active frequency-selective surface with a stretching transformation pattern on a printed circuit board, and soldered the resistors and varactors between each of the two unit patterned cells. The fact that the surface could be stretched meant that the parameters of the unit patterned cell can be actively controlled by stretching.

By modeling the absorber using a transmission line, the researchers found that the varactor provides a variable capacitance at varying bias voltage, which produces the device’s tunability, while the lumped resistor with constant resistance reliably produces strong absorption at the resonance frequency. Besides the lumped impedances of the loaded elements, the researchers discovered that the parameters of the unit patterned cells contribute to the device’s absorption performance as well.

“We applied various stretching transformation coefficients to the unit cell pattern to obtain the available parameters to expand the tunable bandwidth,” Xu said. “Our results suggest that a cell pattern with a smaller stretching transformation coefficients ratio (i.e. width to length ratio of the unit cell) leads to higher resonance frequency absorption and produces a wider tunable bandwidth as well.”

Xu noted that it is the first time that stretching transformation pattern is used in the active frequency-selective surface absorber to expand the bandwidth, which turns out to be an effective technique for producing broadband tunability.

“At frequencies below two gigahertz, conventional microwaves absorbers are limited in application by their thickness and narrow absorption bandwidth. Our proposed absorber has achieved broadband tunability and ultra-thin film simultaneously,” Xu said. “The total thickness of 7.8 millimeters is around one twenty-ninth wavelength of the central frequency of incident microwaves, and the ultra-thin absorber with broad bandwidth may be widely used in warship stealth, airplane cloaking and tunable, broadband antennae.”

The researchers’ next step is to study the polarization and the oblique incidence performance for the proposed active frequency-selective surface absorber.

The article "An ultra-thin broadband active frequency-selective surface absorber for ultrahigh-frequency applications" is authored by Wenhua Xu, Yun He, Peng Kong, Jialin Li, Haibing Xu, Ling Miao, Shaowei Bie and Jianjun Jiang. It will be published in the Journal of Applied Physics on November 10, 2015 (DOI: 10.1063/1.4934683). After that date, it can be accessed at: http://scitation.aip.org/content/aip/journal/jap/118/18/10.1063/1.4934683

The authors of this study are affiliated with Huazhong University of Science and Technology, China.

ABOUT THE JOURNAL

Journal of Applied Physics is an influential international journal publishing significant new experimental and theoretical results of applied physics research. See: http://jap.aip.org

Contact Information
Jason Socrates Bardi
+1 240-535-4954
jbardi@aip.org
@jasonbardi

Jason Socrates Bardi | newswise

Further reports about: Cloaking Microwave Radar Ultra-Thin microwaves parameters

More articles from Physics and Astronomy:

nachricht When helium behaves like a black hole
22.03.2017 | University of Vermont

nachricht Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars
22.03.2017 | International Centre for Radio Astronomy Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>