Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultra-Thin, Tunable, Broadband Microwave Absorber May Advance Radar Cloaking

13.11.2015

Chinese scientists have developed an ultra-thin, tunable microwave absorber that can operate over a broad range of frequencies, demonstrating its potential in improving aircraft cloaking, warship stealth and broadband antenna

Microwave absorbers are a kind of material that can effectively absorb incident microwave energy to make objects invisible to radar; therefore they are commonly used in aircraft cloaking and warship stealth.


Intelligent Electronics Institute, Huazhong University of Sci&Tec.

For the first time, Stretching Transformation is applied to the unit cell pattern to expand the tunable bandwidth. With this technique, it is realizable to be thin and achieve broadband absorption simultaneously.

strec

Recently, as radar detection devices have been improved to detect the near-meter microwave length regime, scientists are working on high-performance absorbers that can cloak objects in the equivalent ultra-high frequency regime (from 300 megahertz to two gigahertz). However, conventional absorbers for the ultra-high regime are usually thick, heavy or have narrow absorption bandwidth, making them unsuitable for stealth missions.

To solve this problem, a team of researchers from Huazhong University of Science and Technology in China has developed an ultra-thin, tunable broadband microwave absorber for ultra-high frequency applications. This ultra-thin absorbing surface, called an active frequency-selective surface absorber, consists of arrays of patterned conductors loaded with two common types of circuit elements known as resistors and varactors.

The unit patterned cell absorbs microwaves and can also be actively controlled by stretching to expand the tunable bandwidth. In a paper published this week in the Journal of Applied Physics, from AIP Publishing, the researchers presented this work.

“Our proposed absorber was fabricated with a stretching transformation pattern, which is both thin and can absorb a wide range of frequencies for near-meter microwave application,” said Wenhua Xu, the primary researcher in the team led by Jianjun Jiang, a professor of School of Optical and Electronic Information at the Huazhong University of Science and Technology, China.

“Its absorption range covers a broad band from 0.7 to 1.9 gigahertz below -10 decibel, and the total thickness of the absorber is only 7.8 millimeters, which is one of the thinnest microwave absorbers reported.”

“Usually the thickness of conventional radar absorbers is a quarter the wavelength of the incident microwave. In the high frequency regime, take one gigahertz as an example, the thickness of the absorber would be around 7.5 centimeters, which is too thick and heavy to be used in aircrafts or warships. Our proposed absorber is almost ten times thinner than conventional ones,” Xu said.

Other alternative absorbers, such as metamaterial absorbers made from a resonant metallic structure printed on a dielectric substrate, though significantly thinner than the wavelengths absorbed, have a narrow working bandwidth.

To develop a novel absorber that is both thin and with broadband performance, Jiang’s team employed a type of thin, light periodic structure called a frequency-selective surface, which consists of an assembly of patterned conductors arranged in a two-dimensional array, usually backed by a thin dielectric, to reflect incident microwaves according to their frequency.

In the experiment, Jiang’s team fabricated a broadband active frequency-selective surface with a stretching transformation pattern on a printed circuit board, and soldered the resistors and varactors between each of the two unit patterned cells. The fact that the surface could be stretched meant that the parameters of the unit patterned cell can be actively controlled by stretching.

By modeling the absorber using a transmission line, the researchers found that the varactor provides a variable capacitance at varying bias voltage, which produces the device’s tunability, while the lumped resistor with constant resistance reliably produces strong absorption at the resonance frequency. Besides the lumped impedances of the loaded elements, the researchers discovered that the parameters of the unit patterned cells contribute to the device’s absorption performance as well.

“We applied various stretching transformation coefficients to the unit cell pattern to obtain the available parameters to expand the tunable bandwidth,” Xu said. “Our results suggest that a cell pattern with a smaller stretching transformation coefficients ratio (i.e. width to length ratio of the unit cell) leads to higher resonance frequency absorption and produces a wider tunable bandwidth as well.”

Xu noted that it is the first time that stretching transformation pattern is used in the active frequency-selective surface absorber to expand the bandwidth, which turns out to be an effective technique for producing broadband tunability.

“At frequencies below two gigahertz, conventional microwaves absorbers are limited in application by their thickness and narrow absorption bandwidth. Our proposed absorber has achieved broadband tunability and ultra-thin film simultaneously,” Xu said. “The total thickness of 7.8 millimeters is around one twenty-ninth wavelength of the central frequency of incident microwaves, and the ultra-thin absorber with broad bandwidth may be widely used in warship stealth, airplane cloaking and tunable, broadband antennae.”

The researchers’ next step is to study the polarization and the oblique incidence performance for the proposed active frequency-selective surface absorber.

The article "An ultra-thin broadband active frequency-selective surface absorber for ultrahigh-frequency applications" is authored by Wenhua Xu, Yun He, Peng Kong, Jialin Li, Haibing Xu, Ling Miao, Shaowei Bie and Jianjun Jiang. It will be published in the Journal of Applied Physics on November 10, 2015 (DOI: 10.1063/1.4934683). After that date, it can be accessed at: http://scitation.aip.org/content/aip/journal/jap/118/18/10.1063/1.4934683

The authors of this study are affiliated with Huazhong University of Science and Technology, China.

ABOUT THE JOURNAL

Journal of Applied Physics is an influential international journal publishing significant new experimental and theoretical results of applied physics research. See: http://jap.aip.org

Contact Information
Jason Socrates Bardi
+1 240-535-4954
jbardi@aip.org
@jasonbardi

Jason Socrates Bardi | newswise

Further reports about: Cloaking Microwave Radar Ultra-Thin microwaves parameters

More articles from Physics and Astronomy:

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

nachricht New survey hints at exotic origin for the Cold Spot
26.04.2017 | Royal Astronomical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>