Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UAH Scientists Ship Instrument That Will Expand View of Global Lightning

12.02.2015

An expanded view of lightning around the globe is coming closer for scientists at The University of Alabama in Huntsville (UAH), thanks to a repurposed measuring instrument.

UAH researchers have passed NASA qualifying inspections and shipped out a Lightning Imaging Sensor (LIS) in preparation for its planned March 2016 flight to the International Space Station (ISS). The instrument, dubbed ISS LIS, was originally built as a flight spare for a LIS mission that launched in November 1997 aboard NASA’s Tropical Rainfall Measuring Mission (TRMM). That instrument is still in operation today.


Michael Mercier / UAH

The complete ISS LIS awaits packing for a trip to Johnson Space Center in Texas.

Like the LIS that flew before it, the current ISS LIS is a space-based instrument used to detect the distribution and variability of total cloud-to-cloud, intracloud and cloud-to-ground lightning that occurs in the tropical regions of the globe.

Funded by NASA, ISS LIS is being shipped to the Johnson Space Center (JSC) in Houston, Texas, where it will be integrated onto the Space Test Program H5 spacecraft as one of 10 instruments. The integrated H5 spacecraft will then undergo environmental testing at JSC through August of 2015.

... more about:
»ISS »NASA »Space »Space Center »TRMM »UAH »activity »lightning »spacecraft

The H5 will then be shipped to NASA Kennedy Space Center for integration onto the EXpedite the PRocessing of Experiments to Space Station (EXPRESS) Pallet Adapter (ExPA). The ExPA will in turn be attached to a SpaceX Dragon Capsule for the 2016 launch.

“The ISS LIS will be integrated onto the Space Test Program H5 spacecraft at NASA’s Johnson Space Center in Houston, where it will undergo testing through August 2015,” says Mike Stewart, a UAH Earth Systems Science Center (ESSC) principal research engineer. “The ISS LIS will be one of 10 instruments on the H5.”

Once on-orbit, the ExPA will be robotically mounted to the EXPRESS Logistics Carrier (ELC), which provides the payload interface to the ISS. The ELC will be attached to the ISS truss structure.

In less than 16 months, UAH’s ESSC and Rotorcraft Systems Engineering and Simulation Center (RSESC) designed, manufactured and space-qualified a new Interface Unit to adapt the legacy TRMM/LIS Electronics Unit and Sensor Unit to the STP H5 spacecraft. The legacy TRMM/LIS Units also required adaptations for the STP H5.

“This development is an excellent follow-on to the original LIS, extending our ability to observe global lightning activity over a longer period of time,” says Dr. Hugh Christian, a principal researcher at ESSC and the principal investigator for the ISS LIS instrument. “Further, ISS LIS will be in a higher orbital plane, thus extending our observations to higher latitudes.”

ISS LIS is designed to detect lightning during the daytime and nighttime. It takes 560 images per second and transforms those images into lightning events using specialized electronic processors. ISS LIS will be launched at about the same time as the Geostationary Lightning Mapper (GLM), much of which was also designed and developed at UAH. It will provide important validation data for GLM.

In addition, there will be important complimentary instruments on the space station that will enable researchers to significantly extend knowledge of Terrestrial Gamma ray Flashes (TGF).

“We hope to continue our studies of lightning and severe weather, investigate the relationship between global lightning activity and climate change, provide validation for the GLM, and improve our understanding of TGFs,” says Dr. Christian.

UAH’s ESSC was the ISS LIS technical and scientific lead. The university’s RSESC was the program manager and lead systems engineer.

“RSESC supported ESSC by providing the engineering and program management to complete the project,” says Sue O’Brien, principal research engineer at RSESC.

“UAH worked with NASA’s Marshall Space Flight Center and provided the information and analysis to complete the certification and associated processes,” O’Brien says.

“We prepared this payload for flight and are ready for delivery to NASA’s Space Test Program in just over a year, which was quite an accomplishment for the team,” O’Brien says. “We are looking forward to the knowledge gained from ISS LIS and what UAH can accomplish in space in the years to come.”

ISS LIS carries forward a long UAH pedigree in space-based lightning research, Dr. Christian says.

“I started working on the concept of space-based lightning observations in 1980,” he says. “Our first instrument, the Optical Transient Detector (OTD) was launch in April 1995.”

Contact Information
Jim Steele
Research Writer/Editor
jim.steele@uah.edu
Phone: 256-824-2772

Jim Steele | newswise
Further information:
http://www.uah.edu

Further reports about: ISS NASA Space Space Center TRMM UAH activity lightning spacecraft

More articles from Physics and Astronomy:

nachricht Comet or asteroid? Hubble discovers that a unique object is a binary
21.09.2017 | NASA/Goddard Space Flight Center

nachricht First users at European XFEL
21.09.2017 | European XFEL GmbH

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>