Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Two photons strongly coupled by glass fiber

03.11.2014

At the Vienna University of Technology, 2 photons have been made to interact strongly using an ultra-thin glass fiber; This technique is an important new tool for quantum technology

Two photons in free space do not interact. Light waves can pass through each other without having any influence on each other at all. For many applications in quantum technology, however, interaction between photons is crucial.


The light in a glass fiber is coupled to a bottle resonator.

Credit: TU Wien


Light runs around a bottle-shaped glass fiber, about half as thick as a human hair.

Credit: TU Wien

It is an indispensable prerequisite for transmitting information through tap-proof quantum channels or for building optical logic gates. At the Vienna University of Technology (TU Wien), scientists have now succeeded in establishing a strong interaction between two single photons. This opens up completely new possibilities for quantum optics. The experimental results have now been published in the journal "Nature Photonics".

Interaction Usually Requires Bright Light

"In order to have light interact with light, people have been using so-called nonlinear media", says Professor Arno Rauschenbeutel (Institute for Atomic and Subatomic Physics, TU Wien). The light has an effect on the properties of these materials, and the material in turn influences the light, which leads to an indirect coupling between photons. This technique, however, can only be used at strong light intensities, when countless photons are involved.

At TU Wien, a system was built which creates a strong interaction between only two photons. This interaction is so strong that the phase of the photons is changed by 180 degrees. "It is like a pendulum, which should actually swing to the left, but due to coupling with a second pendulum, it swings to the right. There cannot be a more extreme change in the pendulum's oscillation", says Rauschenbeutel. "We achieve the strongest possible interaction with the smallest possible intensity of light."

A Photon in a Bottle

To make this possible, the photon has to be sent on an unlikely journey. An ultra-thin glass fibre is coupled to a tiny bottle-like light resonator so that light can partly enter the resonator, move in circles and return to the glass fibre. This detour through the resonator leads to the phase of the photon being inverted: a wave crest appears where a wave trough would have been expected.

When, however, a single rubidium atom is coupled to the resonator, the system is changed dramatically. Due to the presence of the atom, hardly any light enters the resonator anymore and the oscillation phase of the photon cannot be inverted.

Two Photons at Once

Things change when two photons arrive at the same time. "The atom is an absorber which can be saturated", says Arno Rauschenbeutel. "A photon is absorbed by the atom for a short while and then released into the resonator. During that time, it cannot absorb any other photons. If two photons arrive simultaneously, only one can be absorbed, while the other can still be phase shifted."

From a quantum mechanical point of view, there is no difference between the two photons. They can only be understood as a joint wave-like object, which is located in the resonator and in the glass fibre at the same time. The photons are indistinguishable. No one can tell which of them is being absorbed and which one has passed. When both hit the resonator at the same time, both of them together experience a phase shift by 180 degrees. Two interacting photons arriving simultaneously show a completely different behaviour than single photons.

The Building Blocks of Future Quantum Data-Highways?

"That way, a maximally entangled photon state can be created", says Arno Rauschenbeutel. "Such states are required in all fields of quantum optics – in quantum teleportation, or for light-transistors which could potentially be used for quantum computing."

A big advantage of the new system is that it is based on glass fibre technology, which is already being used for online communication anyway. Nano glass fibres and bottle-resonators are perfectly compatible with existing technologies. The targeted creation of a strong photon-photon-interaction is an important step towards a worldwide quantum information network for the tap-proof transmission of data.

Further information:

Prof. Arno Rauschenbeutel
Insitute for Atomic and Subatomic Physics
Vienna Center for Quantum Science and Technology
TU Wien
Stadionallee 2, 1020 Wien
T: +43-1-58801-141761
arno.rauschenbeutel@tuwien.ac.at

Dr. Jürgen Volz
Insitute for Atomic and Subatomic Physics
Vienna Center for Quantum Science and Technology
TU Wien
Stadionallee 2, 1020 Wien
T: +43-1-58801-141739
juergen.volz@tuwien.ac.at

Florian Aigner | EurekAlert!
Further information:
http://www.tuwien.ac.at/tu_vienna/

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>