Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Two or one splashing? It’s different!

15.01.2015

If two children splash in the sea high water waves will emerge due to constructive superposition. Different observations are made for the microscopic world in an experiment at the University of Bonn, where physicists used a laser beam to generate light waves from two cesium atoms. The light waves were reflected back from two parallel mirrors. It turned out that this experimental arrangement suppressed the emergence of high light waves. With their results, which are published now in the „Physical Review Letters“, the scientists observed the most fundamental scenario of light-matter interaction with two atoms.

The physicists at the University of Bonn confined two levitating cesium atoms in a light cage for photons. A laser beam continuously irradiated the two atoms, which scattered the laser light similar to levitating dust in a sunbeam. The scattered light waves superimpose and were reflected back onto the atoms by two parallel mirrors.


In the lab: Dr. René Reimann, Tobias Macha and Prof. Dr. Dieter Meschede from the Institute of Applied Physics of the University Bonn.

(c) Photo: Volker Lannert/Uni Bonn

“We expected that two atoms in such a cage would behave differently from a single atom” says first author Dr. René Reimann, colleague of Prof. Dr. Dieter Meschede at the “Institut für Angewandte Physik”, University of Bonn. This matches with our everyday experience: Two splashing children in the sea produce different water waves than a single child. However, for the light cage with the light waves emitted from the two atoms the analogy to the splashing children in the sea does not fully hold. Here no high light waves are observed.

Backaction suppresses high light waves

The surprising situation of the two atoms inside the light cage can be illustrated with two children in a swimming pool instead of the sea. Here the children create water waves that are partially reflected from the pool edge. Now the reflected waves and the forward running waves cancel each other. “Due to this feedback two children can in the best case generate barely higher waves than a single child”. Albeit by changing the distance between them, the kids in the pool can change the height of the water waves.
Keeping this in mind one can understand the situation of the two cesium atoms in the experiment: Even in the best case when the light waves of the two atoms constructively interfere barely more photons could be counted compared to the one atom case. “It became clear that the mirrors introduce a strong backaction that hinders the emergence of high light waves”, describes Dieter Meschede.

New insights in light-matter interaction

Nevertheless minimal position changes of the levitating cesium atoms in the light cage can be detected through distinct changes in the height of the superimposed light waves. “Up to now this was not possible. Now, this opens up new insights and experimental possibilities for the light-atom interaction of two-atom systems”, says René Reimann. These new possibilities could support forward-looking technologies like quantum memories and quantum networks for telecommunication and computation.

So far, international teams of scientists observed the interaction of a single or many atoms with photons in a light cage. For his fundamental contributions to this research, Serge Haroche was awarded the Nobel Prize in physics in 2012. Now, the physicists from Bonn achieved to observe the interaction of exactly two atoms in a light cage. “With this experiment the most fundamental case of collective light-matter interaction has been realized”, says Dieter Meschede.

The research group “Quantum Technologies” at the University of Bonn experimentally investigates the controlled interaction between atoms and light. The group is focusing on the generation of particular quantum mechanical states.

Publication: R. Reimann, W. Alt, T. Kampschulte, T. Macha, L. Ratschbacher, N. Thau, S. Yoon, D. Meschede, Cavity-Modified Collective Rayleigh Scattering of Two Atoms, Physical Review Letters, DOI: 10.1103/PhysRevLett.114.023601

Contact information for media:

Dr. René Reimann
Institut für Angewandte Physik
Forschungsgruppe Quantentechnologie
Tel. 0228/733489
E-Mail: reimann@iap.uni-bonn.de

Prof. Dr. Dieter Meschede
Institut für Angewandte Physik
Forschungsgruppe Quantentechnologie
Tel. 0228/733477
E-Mail: meschede@uni-bonn.de

Johannes Seiler | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-bonn.de/

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>