Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Twisted magnetic loop in the Giraffe galaxy IC 342

18.06.2015

Magnetic fields exist everywhere in the Universe, but there is still little idea how important they are for the evolution of cosmic objects. Rainer Beck from MPIfR (Bonn, Germany) gathered a huge radio data set of the nearby galaxy IC 342 from observations with two of the world's largest radio telescopes, NRAO's Very Large Array and the 100-m radio telescope of the MPIfR, in four different wavelength bands, from 2.8 cm to 21 cm. An ordered magnetic field mostly aligned along the optical spiral arms was discovered. The discovery helps to explain how galactic spiral arms are formed. The same study also shows how gas can be funneled inward toward the center of IC 342.

Astronomers making a detailed, multi-telescope study of a nearby galaxy have discovered a magnetic field coiled around the galaxy's main spiral arm. "This study helps resolve some major questions about how galaxies form and evolve," says Rainer Beck, of the Max-Planck Institute for Radio Astronomy (MPIfR), in Bonn, Germany.


Small- and large-scale polarized emission from IC 342 at 6 cm wavelength, combined from data from the VLA (5 pointings) and the 100-m Effelsberg telescope at a resolution of 25 seconds of arc.

R. Beck/MPIfR; Graphics: U. Klein/AIfA; Background Image: Kitt Peak Observatory (T.A. Rector, University of Alaska, and H. Schweiker, WIYN and NOAO/AURA/NSF).


Large-scale polarized emission from IC 342 at 6 cm wavelength, observed with the 100-m Effelsberg telescope at a resolution of 3 minutes of arc.

R. Beck., A&A Vol. 578, A93 (June 2015)

The scientists studied a galaxy called IC 342, some 10 million light-years from Earth in the northern constellation Camelopardalis (the Giraffe), using MPIfR's 100-meter Effelsberg radio telescope in Germany and the National Science Foundation's Karl G. Jansky Very Large Array (VLA). Data from both radio telescopes were merged to reveal the magnetic structures of the galaxy.

The surprising result showed a huge, helically-twisted loop coiled around the galaxy's main spiral arm. Such a feature, never before seen in a galaxy, is strong enough to affect the flow of gas around the spiral arm.

"Spiral arms can hardly be formed by gravitational forces alone," continues Rainer Beck. "This new IC 342 image indicates that magnetic fields also play an important role in forming spiral arms."

The new observations provided clues to another aspect of the galaxy, a bright central region that may host a black hole and also is prolifically producing new stars. To maintain the high rate of star production requires a steady inflow of gas from the galaxy's outer regions into its center.

"The magnetic field lines at the inner part of the galaxy point toward the galaxy's center, and would support an inward flow of gas," says Rainer Beck.

The scientists mapped the galaxy's magnetic-field structures by measuring the orientation, or polarization, of the radio waves emitted by the galaxy. The orientation of the radio waves is perpendicular to that of the magnetic field. Observations at several wavelengths made it possible to correct for rotation of the waves' polarization plane caused by their passage through interstellar magnetic fields along the line of sight to Earth.

The Effelsberg telescope, with its wide field of view, showed the full extent of IC 342, which, if not partially obscured to visible-light observing by dust clouds within our own Milky Way Galaxy, would appear as large as the full moon in the sky. The high resolution of the VLA, on the other hand, revealed the finer details of the galaxy. The final image was produced by combining five VLA images made with 24 hours of observing time, along with 30 hours of data from Effelsberg.

Scientists from MPIfR, including Rainer Beck were the first to detect polarized radio emission in galaxies, starting with Effelsberg observations of the Andromeda Galaxy in 1978. Another MPIfR scientist, Marita Krause, made the first such detection with the VLA in 1989, with observations that included IC 342, which is the third-closest spiral galaxy to Earth, after the Andromeda Galaxy (M31) and the Triangulum Galaxy (M33).


The Effelsberg 100m radio telescope is one of the largest fully steerable radio telescopes on earth. It is operated by the Max-Planck-Institut für Radioastronomie in Bonn, Germany and located in a valley approximately 40 km southwest of Bonn. It is a very sensitive instrument in order to investigate magnetic fields in nearby galaxies by observations of polarized radio emission at different radio wavelengths.

The Very Large Array (VLA) is one of the world's premier astronomical radio observatories, consisting of 27 radio antennas of 25 m diameter each in a Y-shaped configuration on the Plains of San Agustin fifty miles west of Socorro, New Mexico. The National Radio Astronomy Observatory (NRAO) is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

Original Paper:

Magnetic fields in the nearby spiral galaxy IC 342: A multi-frequency radio polarization study, by Rainer Beck, Astronomy & Astrophysics, Volume 578, June 2015, A93 (DOI: 10.1051/0004-6361/201425572):
http://www.aanda.org/articles/aa/abs/2015/06/aa25572-14/aa25572-14.html

Contact:

Dr. Rainer Beck,
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49-228-525-323
E-mail: rbeck@mpifr-bonn.mpg.de

Dr. Norbert Junkes,
Press and Public Outreach,
Max-Planck-Institut für Radioastronomie.
Fon: +49(0)228-525-399
E-mail: njunkes@mpifr-bonn.mpg.de

Weitere Informationen:

http://www.mpifr-bonn.mpg.de/pressreleases/2015/6

Norbert Junkes | Max-Planck-Institut für Radioastronomie

More articles from Physics and Astronomy:

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

nachricht Pluto's hydrocarbon haze keeps dwarf planet colder than expected
16.11.2017 | University of California - Santa Cruz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>