Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tunable Materials Clear the Way for Advanced Optics

14.01.2016

A team of German and American physicists develops a way to precisely engineer the transition point for the phase-transition material vanadium dioxide to occur at specific temperatures.

Now you see it, now you don’t: In books and movies, wizards use magic spells to easily change things from a solid to see-through state. However, in reality, materials with properties called phase transition can pull off a similar trick, changing from clear to cloudy depending on the temperature or an applied electric field.


The physicist Jura Rensberg from the University of Jena (Germany) is part of the international researcher team.

Photo: Jan-Peter Kasper/FSU

Recently, a multi-institutional international team of researchers with the participation of physicists from the Friedrich Schiller University Jena (Germany) developed a way to engineer the transition point for the phase-transition material vanadium dioxide to occur at specific temperatures.

The research, published today in Nano Letters, could lead to new types of tunable materials for optics and thermal regulation.

“Essentially, any optical component would be better if it were tunable,” says Mikhail Kats, a University of Wisonsin-Madison (USA) assistant professor of electrical and computer engineering and senior author of the paper.

Rather than relying on mechanical components to focus an object such as a camera lens or telescope eyepiece, a tunable material changes its innate optical properties on demand. Scientists have known for more than 50 years that substances like vanadium dioxide can transition between opaque and transparent. However, these materials typically switch under only one particular set of conditions, limiting their applicability.

“In most phase-transition materials, the change occurs at conditions that are far from room temperature, and thus are difficult to incorporate into useful devices,” says Kats.

The researchers not only changed vanadium dioxide’s intrinsic shift point from 68 degrees Celsius to below room temperature, they also successfully tuned the transition for that material to any temperature. “This finding is going to open new frontiers in photonic devices,” says Shriram Ramanathan, a professor of materials engineering at Purdue University in West Lafayette, Indiana (USA), who also contributed to the research.

Use in “smart” walls possible

Because optical and physical properties arise from the same underlying physical principles, vanadium dioxide’s thermal and electrical conductivities also shift with the transition. These types of materials could be used, for example, in homes as “smart” walls or windows that respond to the environment.

“Objects designed to emit light efficiently at high temperatures but not at low temperatures could be used as purely passive temperature regulators that do not require external circuitry or power sources,” Kats says.

Previously, researchers attempting to change the transition temperatures of vanadium dioxide always introduced impurities as they created it. However, this method uniformly alters the material’s entire surface – so instead, the German-American team of researchers bombarded specific regions of the vanadium dioxide with energetic ions.

Ion irradiation creates defects in materials, usually an unintended side effect. However, collaborator Carsten Ronning of the Friedrich Schiller University Jena, Germany, explains, the researchers’ advance now capitalizes on those defects. “The beauty in our approach is that we take advantage of the ‘unwanted’ defects,” he says. Directing the ion-beam at specific regions of a surface allowed the researchers to make nanoscale modifications to the material.

“We can precisely control the transition temperature everywhere on the sample, with roughly 20-nanometre precision,” Ronning states. “We have been able to use this method to create highly effective meta-surface areas which have multiple phase transitions at the same time.” This technique enabled the researchers to design and create a novel optical polariser that changes selectivity based on temperature.

Scientists spanning the globe contributed to this research. The manuscript’s co-first authors, Jura Rensberg of the Friedrich Schiller University Jena and Shuyan Zhang of Harvard University, are pursuing PhDs in Professor Carsten Ronning’s and Professor Federico Capasso’s laboratories, respectively.

Original publication:
Nano Letters (2016), Article ASAP, DOI: 10.1021/acs.nanolett.5b04122
http://pubs.acs.org/toc/nalefd/0/0

Contact person (in Jena):
Prof. Dr. Carsten Ronning
Institute for Solid State Physics of the Friedrich Schiller University Jena
Helmholtzweg 3
07743 Jena, Germany
Phone: +49 (0)3641 / 947300
Email: carsten.ronning[at]uni-jena.de

www.nano.uni-jena.de

Weitere Informationen:

http://www.uni-jena.de/en/start.html

Axel Burchardt | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht European XFEL prepares for user operation: Researchers can hand in first proposals for experiments
24.01.2017 | European XFEL GmbH

nachricht PPPL physicist uncovers clues to mechanism behind magnetic reconnection
24.01.2017 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Arctic melt ponds form when meltwater clogs ice pores

24.01.2017 | Earth Sciences

Synthetic nanoparticles achieve the complexity of protein molecules

24.01.2017 | Life Sciences

PPPL physicist uncovers clues to mechanism behind magnetic reconnection

24.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>