Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tunable Materials Clear the Way for Advanced Optics

14.01.2016

A team of German and American physicists develops a way to precisely engineer the transition point for the phase-transition material vanadium dioxide to occur at specific temperatures.

Now you see it, now you don’t: In books and movies, wizards use magic spells to easily change things from a solid to see-through state. However, in reality, materials with properties called phase transition can pull off a similar trick, changing from clear to cloudy depending on the temperature or an applied electric field.


The physicist Jura Rensberg from the University of Jena (Germany) is part of the international researcher team.

Photo: Jan-Peter Kasper/FSU

Recently, a multi-institutional international team of researchers with the participation of physicists from the Friedrich Schiller University Jena (Germany) developed a way to engineer the transition point for the phase-transition material vanadium dioxide to occur at specific temperatures.

The research, published today in Nano Letters, could lead to new types of tunable materials for optics and thermal regulation.

“Essentially, any optical component would be better if it were tunable,” says Mikhail Kats, a University of Wisonsin-Madison (USA) assistant professor of electrical and computer engineering and senior author of the paper.

Rather than relying on mechanical components to focus an object such as a camera lens or telescope eyepiece, a tunable material changes its innate optical properties on demand. Scientists have known for more than 50 years that substances like vanadium dioxide can transition between opaque and transparent. However, these materials typically switch under only one particular set of conditions, limiting their applicability.

“In most phase-transition materials, the change occurs at conditions that are far from room temperature, and thus are difficult to incorporate into useful devices,” says Kats.

The researchers not only changed vanadium dioxide’s intrinsic shift point from 68 degrees Celsius to below room temperature, they also successfully tuned the transition for that material to any temperature. “This finding is going to open new frontiers in photonic devices,” says Shriram Ramanathan, a professor of materials engineering at Purdue University in West Lafayette, Indiana (USA), who also contributed to the research.

Use in “smart” walls possible

Because optical and physical properties arise from the same underlying physical principles, vanadium dioxide’s thermal and electrical conductivities also shift with the transition. These types of materials could be used, for example, in homes as “smart” walls or windows that respond to the environment.

“Objects designed to emit light efficiently at high temperatures but not at low temperatures could be used as purely passive temperature regulators that do not require external circuitry or power sources,” Kats says.

Previously, researchers attempting to change the transition temperatures of vanadium dioxide always introduced impurities as they created it. However, this method uniformly alters the material’s entire surface – so instead, the German-American team of researchers bombarded specific regions of the vanadium dioxide with energetic ions.

Ion irradiation creates defects in materials, usually an unintended side effect. However, collaborator Carsten Ronning of the Friedrich Schiller University Jena, Germany, explains, the researchers’ advance now capitalizes on those defects. “The beauty in our approach is that we take advantage of the ‘unwanted’ defects,” he says. Directing the ion-beam at specific regions of a surface allowed the researchers to make nanoscale modifications to the material.

“We can precisely control the transition temperature everywhere on the sample, with roughly 20-nanometre precision,” Ronning states. “We have been able to use this method to create highly effective meta-surface areas which have multiple phase transitions at the same time.” This technique enabled the researchers to design and create a novel optical polariser that changes selectivity based on temperature.

Scientists spanning the globe contributed to this research. The manuscript’s co-first authors, Jura Rensberg of the Friedrich Schiller University Jena and Shuyan Zhang of Harvard University, are pursuing PhDs in Professor Carsten Ronning’s and Professor Federico Capasso’s laboratories, respectively.

Original publication:
Nano Letters (2016), Article ASAP, DOI: 10.1021/acs.nanolett.5b04122
http://pubs.acs.org/toc/nalefd/0/0

Contact person (in Jena):
Prof. Dr. Carsten Ronning
Institute for Solid State Physics of the Friedrich Schiller University Jena
Helmholtzweg 3
07743 Jena, Germany
Phone: +49 (0)3641 / 947300
Email: carsten.ronning[at]uni-jena.de

www.nano.uni-jena.de

Weitere Informationen:

http://www.uni-jena.de/en/start.html

Axel Burchardt | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht NASA's Fermi catches gamma-ray flashes from tropical storms
25.04.2017 | NASA/Goddard Space Flight Center

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>