Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Transfer of atomic mass with a photon solves the momentum paradox of light

06.07.2017

The propagation of light in a transparent medium associated with the transfer of atomic mass density

In a recent publication, Aalto University researchers show that in a transparent medium each photon is accompanied by an atomic mass density wave. The optical force of the photon sets the medium atoms in motion and makes them carry 92% of the total momentum of light, in the case of silicon.


Photon mass drag and the momentum of light in a medium.

Credit: Mikko Raskinen / Aalto University

The novel discovery solves the centennial momentum paradox of light. In the literature, there has existed two different values for the momentum of light in the transparent medium. Typically, these values differ by a factor of ten and this discrepancy is known as the momentum paradox of light. The difference between the momentum values is caused by neglecting the momentum of atoms moving with the light pulse.

To solve the momentum paradox the authors prove that the special theory of relativity requires an extra atomic density to travel with the photon. In related classical computer simulations, they use optical force field and Newton´s second law to show that a wave of increased atomic mass density is propagating through the medium with the light pulse.

The mass transfer leads to splitting of the total momentum of light into two components. The fields' share of momentum is equal to the Abraham momentum while the total momentum, which includes also the momentum of atoms driven forward by the optical force, is equal to the Minkowski momentum.

"Since our work is theoretical and computational it must be still verified experimentally, before it can become a standard model of light in a transparent medium. Measuring the total momentum of a light pulse is not enough but one also has to measure the transferred atomic mass. This should be feasible using present interferometric and microscopic techniques and common photonic materials", researcher Mikko Partanen says.

Potential interstellar applications of the discovery

The researchers are working on potential optomechanical applications enabled by the optical shock wave of atoms predicted by the new theory. However, the theory applies not only to transparent liquids and solids but also to dilute interstellar gas. Using a simple kinematic consideration it can be shown that the energy loss caused by the mass transfer effect becomes for dilute interstellar gas proportional to the photon energy and distance travelled by light.

"This prompts for further simulations with realistic parameters for interstellar gas density, plasma properties and temperature. Presently the Hubble's law is explained by Doppler shift being larger from distant stars. This effectively supports the hypothesis of expanding universe. In the mass polariton theory of light this hypothesis is not needed since redshift becomes automatically proportional to the distance from the star to the observer", explains Professor Jukka Tulkki.

Media Contact

Jukka Tulkki
jukka.tulkki@aalto.fi
358-505-204-360

 @aaltouniversity

http://www.aalto.fi/en/ 

Jukka Tulkki | EurekAlert!

More articles from Physics and Astronomy:

nachricht NASA's James Webb Space Telescope completes final cryogenic testing
21.11.2017 | NASA/Goddard Space Flight Center

nachricht Previous evidence of water on mars now identified as grainflows
21.11.2017 | US Geological Survey

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>