Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Top-5 achievements at the Princeton Plasma Physics Laboratory in 2015

13.01.2016

From launching the most powerful spherical tokamak on Earth to discovering a mechanism that halts solar eruptions, scientists at the U.S. Department of Energy's Princeton Plasma Physics Laboratory advanced the boundaries of clean energy and plasma science research in 2015. Here, in no particular order, are our picks for the Top-5 developments of the year:

1. Starting up the National Spherical Torus Experiment-Upgrade (NSTX-U)


From top left: 1.Magnetic island geometry revealing the mechanism for the density limit. (Reprinted with permission from Phys. Plasmas 22, 022514 2015); 2.Carlos Paz-Soldan and Raffi Nazikian advanced understanding of the control of heat bursts; 3.interior of the NSTX-U showing the completed center stack; 4.W7-X stellarator in Greifswald, Germany; 5.solar flare at the peak of the cycle in October, 2014, with no observed eruptions. Background: umbrella view of the interior of the NSTX-U.

Credit: Elle Starkman/PPPL; Lisa Petrillo/GA for Carlos Paz-Soldan and Raffi Nazikian

PPPL completed construction of the NSTX-U, the Laboratory's flagship fusion facility, doubling its heating and magnetic power and making it the most powerful spherical tokamak in the world. The machine is shaped like a cored apple, unlike conventional donut-shaped fusion facilities, and creates high plasma pressure with relatively low magnetic fields -- a highly cost-effective feature since magnetic fields are expensive to produce. The upgrade creates a flexible research platform that will enable physicists to directly address some of fusion's most outstanding puzzles.

2. Discovering a mechanism that halts solar eruptions

Solar eruptions are massive explosions of plasma and radiation from the sun that can be deadly for space travelers and can disrupt cell phone service and other crucial functions when they collide with the magnetic field that surrounds Earth. Researchers working on the Magnetic Reconnection Experiment (MRX), the world's premier device for studying the convergence and separation of magnetic fields in plasma, have discovered a previously unknown mechanism that causes eruptions to fail. The findings could prove highly valuable to NASA, which is eager to know when an eruption is coming and when the start of an outburst is just a false alarm.

3. First plasma on Germany's Wendelstein 7-X

On December 10, 2015, the Wendelstein 7-X (W7-X) stellarator produced its first plasma after 10 years of construction. PPPL, which leads the United States' collaboration in the German project and will conduct research on it, joined the worldwide celebration of the achievement. The Laboratory designed and delivered five barn-door size magnetic coils, together with power supplies, that will help shape the plasma during W7-X experiments. The Lab also designed and installed an X-ray diagnostic system that will collect vital data from the plasma in the machine. Stellarators are fusion facilities that confine plasma in twisty -- or 3D -- magnetic fields, compared with the symmetrical -- or 2D -- fields that tokamaks produce.

4. Enhanced model of the source of the density limit

Physicists have long puzzled over a mystery called the density limit -- a process that causes fusion plasmas to spiral apart when reaching a certain density and keeps tokamaks from operating at peak efficiency. Building on their past research, PPPL scientists have developed a detailed model of the source of this limitation. They've traced the cause to the runaway growth to bubble-like islands that form in the plasma and are cooled by impurities that stray plasma particles kick up from the walls of the surrounding tokamak. Researchers counter this heat loss by pumping fresh heat into the plasma, but even a tiny bit of net cooling in the islands can cause them to grow exponentially and the density limit to be reached. These findings could lead to methods to overcome the barrier.

5. Breakthrough in understanding how to control intense heat bursts

Scientist from General Atomics and PPPL have taken a key step in predicting how to control potentially damaging heat bursts inside a fusion reactor. In experiments on the DIII-D National Fusion Facility that General Atomics operates for the DOE in San Diego, the physicists built upon previous DIII-D research showing that these intense heat bursts -- called edge localized modes (ELMS) -- could be suppressed with tiny magnetic fields. But how these fields worked had been unclear. The new findings reveal that the fields can create two kinds of response, one of which allows heat to leak from the edge of the plasma at just the right rate to avert the heat bursts. The team also identified the changes in the plasma that lead to suppression of the bursts.

###

NSTX-U and DIII-D are DOE Office of Science User Facilities.

PPPL, on Princeton University's Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas -- ultra-hot, charged gases -- and to developing practical solutions for the creation of fusion energy. Results of PPPL research have ranged from a portable nuclear materials detector for anti-terrorist use to universally employed computer codes for analyzing and predicting the outcome of fusion experiments. The Laboratory is managed by the University for the U.S. Department of Energy's Office of Science, which is the largest single supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Media Contact

John Greenwald
jgreenwa@pppl.gov
609-243-2672

 @PPPLab

http://www.pppl.gov 

John Greenwald | EurekAlert!

Further reports about: Atomics Plasma Wendelstein 7-X magnetic fields

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>