Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Top-5 achievements at the Princeton Plasma Physics Laboratory in 2015


From launching the most powerful spherical tokamak on Earth to discovering a mechanism that halts solar eruptions, scientists at the U.S. Department of Energy's Princeton Plasma Physics Laboratory advanced the boundaries of clean energy and plasma science research in 2015. Here, in no particular order, are our picks for the Top-5 developments of the year:

1. Starting up the National Spherical Torus Experiment-Upgrade (NSTX-U)

From top left: 1.Magnetic island geometry revealing the mechanism for the density limit. (Reprinted with permission from Phys. Plasmas 22, 022514 2015); 2.Carlos Paz-Soldan and Raffi Nazikian advanced understanding of the control of heat bursts; 3.interior of the NSTX-U showing the completed center stack; 4.W7-X stellarator in Greifswald, Germany; flare at the peak of the cycle in October, 2014, with no observed eruptions. Background: umbrella view of the interior of the NSTX-U.

Credit: Elle Starkman/PPPL; Lisa Petrillo/GA for Carlos Paz-Soldan and Raffi Nazikian

PPPL completed construction of the NSTX-U, the Laboratory's flagship fusion facility, doubling its heating and magnetic power and making it the most powerful spherical tokamak in the world. The machine is shaped like a cored apple, unlike conventional donut-shaped fusion facilities, and creates high plasma pressure with relatively low magnetic fields -- a highly cost-effective feature since magnetic fields are expensive to produce. The upgrade creates a flexible research platform that will enable physicists to directly address some of fusion's most outstanding puzzles.

2. Discovering a mechanism that halts solar eruptions

Solar eruptions are massive explosions of plasma and radiation from the sun that can be deadly for space travelers and can disrupt cell phone service and other crucial functions when they collide with the magnetic field that surrounds Earth. Researchers working on the Magnetic Reconnection Experiment (MRX), the world's premier device for studying the convergence and separation of magnetic fields in plasma, have discovered a previously unknown mechanism that causes eruptions to fail. The findings could prove highly valuable to NASA, which is eager to know when an eruption is coming and when the start of an outburst is just a false alarm.

3. First plasma on Germany's Wendelstein 7-X

On December 10, 2015, the Wendelstein 7-X (W7-X) stellarator produced its first plasma after 10 years of construction. PPPL, which leads the United States' collaboration in the German project and will conduct research on it, joined the worldwide celebration of the achievement. The Laboratory designed and delivered five barn-door size magnetic coils, together with power supplies, that will help shape the plasma during W7-X experiments. The Lab also designed and installed an X-ray diagnostic system that will collect vital data from the plasma in the machine. Stellarators are fusion facilities that confine plasma in twisty -- or 3D -- magnetic fields, compared with the symmetrical -- or 2D -- fields that tokamaks produce.

4. Enhanced model of the source of the density limit

Physicists have long puzzled over a mystery called the density limit -- a process that causes fusion plasmas to spiral apart when reaching a certain density and keeps tokamaks from operating at peak efficiency. Building on their past research, PPPL scientists have developed a detailed model of the source of this limitation. They've traced the cause to the runaway growth to bubble-like islands that form in the plasma and are cooled by impurities that stray plasma particles kick up from the walls of the surrounding tokamak. Researchers counter this heat loss by pumping fresh heat into the plasma, but even a tiny bit of net cooling in the islands can cause them to grow exponentially and the density limit to be reached. These findings could lead to methods to overcome the barrier.

5. Breakthrough in understanding how to control intense heat bursts

Scientist from General Atomics and PPPL have taken a key step in predicting how to control potentially damaging heat bursts inside a fusion reactor. In experiments on the DIII-D National Fusion Facility that General Atomics operates for the DOE in San Diego, the physicists built upon previous DIII-D research showing that these intense heat bursts -- called edge localized modes (ELMS) -- could be suppressed with tiny magnetic fields. But how these fields worked had been unclear. The new findings reveal that the fields can create two kinds of response, one of which allows heat to leak from the edge of the plasma at just the right rate to avert the heat bursts. The team also identified the changes in the plasma that lead to suppression of the bursts.


NSTX-U and DIII-D are DOE Office of Science User Facilities.

PPPL, on Princeton University's Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas -- ultra-hot, charged gases -- and to developing practical solutions for the creation of fusion energy. Results of PPPL research have ranged from a portable nuclear materials detector for anti-terrorist use to universally employed computer codes for analyzing and predicting the outcome of fusion experiments. The Laboratory is managed by the University for the U.S. Department of Energy's Office of Science, which is the largest single supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit

Media Contact

John Greenwald


John Greenwald | EurekAlert!

Further reports about: Atomics Plasma Wendelstein 7-X magnetic fields

More articles from Physics and Astronomy:

nachricht Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1
21.03.2018 | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

nachricht Taming chaos: Calculating probability in complex systems
21.03.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>