Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

To the center of the brightest quasar

29.03.2016

The space mission RadioAstron employing a 10-meter radio telescope on board of the Russian satellite Spektr-R has revealed the first look at the finest structure of the radio emitting regions in the quasar 3C 273 at wavelengths of 18, 6, and 1.3 cm. These ground breaking observations have been made by an international research team with four of the largest radio telescopes on Earth, including the Effelsberg 100-meter antenna. They provide an unprecedented sensitivity to radio emission at angular scales as small as 26 microarcseconds. This resolution was achieved by combining signals recorded at all antennas and effectively creating a telescope of almost 8 Earth’s diameters in size.

Supermassive black holes, containing millions to billions times the mass of our Sun, reside at the centers of all massive galaxies. These black holes can drive powerful jets that emit prodigiously, often outshining all the stars in their host galaxies. But there is a limit to how bright these jets can be – when electrons get hotter than about 100 billion degrees, they interact with their own emission to produce X-rays and Gamma-rays and quickly cool down.


Artistic view of the 10-meter space radio telescope on board of the Russian satellite Spektr-R comprising the space-borne component of the RadioAstron mission.

Astro Space Center of Lebedev Physical Institute


Artistic view of a quasar; a super-massive black hole in the center is being fed by a disk of gas and dust, producing collimated jets of ejected material moving at nearly the speed of light.

Wolfgang Steffen, Institute for Astronomy, UNAM, Mexico

Astronomers have just reported a startling violation of this long-standing theoretical limit in the quasar 3C 273. "We measure the effective temperature of the quasar core to be hotter than 10 trillion degrees!" comments Yuri Kovalev (Astro Space Center, Lebedev Physical Institute, Moscow, Russia), the RadioAstron project scientist. “This result is very challenging to explain with our current understanding of how relativistic jets of quasars radiate."

To obtain these results, the international team used the Earth-to-Space Interferometer RadioAstron. The interferometer consists of an orbiting radio telescope working together with the largest ground telescopes: the 100-meter Effelsberg Telescope, the 110-m Green Bank Telescope, the 300-m Arecibo Observatory, and the Very Large Array. Operating together, these observatories provide the highest direct resolution ever achieved in astronomy, thousands of times finer than the Hubble Space Telescope.

“The fact that RadioAstron has measured extreme brightness temperatures already in several objects, including the recently reported observations of BL Lacertae, these measurements indeed point out to new underlying physics behind the energetic sources of radiation in quasars”, states Andrei Lobanov, the coordinator of RadioAstron activities at the Max Planck Institute for Radio Astronomy (MPIfR) in Bonn, Germany.

However, the incredibly high temperatures were not the only surprise the RadioAstron team has found in 3C 273. The team also discovered an effect never seen before in an extragalactic source: the image of 3C 273 has substructure caused by the effects of peering through the dilute interstellar material of the Milky Way.

"Just as the flame of a candle distorts an image viewed through the hot turbulent air above it, the turbulent plasma of our own galaxy distorts images of distant astrophysical sources, such as quasars," explains Michael Johnson of the Harvard-Smithsonian Center for Astrophysics (CfA), who led the scattering study. He continues: "These objects are so compact that we had never been able to see this distortion before. The amazing angular resolution of RadioAstron gives us a new tool to understand the extreme physics near the central supermassive black holes of distant galaxies and the diffuse plasma pervading our own galaxy."

“Our research team has been working for a long time on extending the VLBI technique to space antennas reaching baselines much larger than our Earth”, concludes Anton Zensus, director at the MPIfR and head of its Radio Astronomy/VLBI research department. “The new discoveries on 3C 273 are a wonderful example for our successful cooperation within the RadioAstron project.”

The RadioAstron project is led by the Astro Space Center of the Lebedev Physical Institute of the Russian Academy of Sciences and the Lavochkin Scientific and Production Association under a contract with the Russian Federal Space Agency, in collaboration with partner organizations in Russia and other countries.

The Spektr-R antenna of RadioAstron is at an elliptical orbit around Earth reaching a maximum apogee distance of 350,000 km which would result in a virtual radio telescope of up to 27 times the Earth’s diameter.

This research is partly based on observations with the 100 m telescope of the MPIfR at Effelsberg.

MPIfR scientists involved in the project are Andrei Lobanov, J. Anton Zensus, James Anderson, Uwe Bach and Alex Kraus. Yuri Kovalev is affiliated as guest scientist with the MPIfR.

3C 273 is a quasar (active galactic nucleus) in the direction to the constellation Virgo. With a magnitude of 12.9 it is the optically brightest quasar in the sky, its redshift of 0.158 corresponding to a distance of approximately 2.4 billion light years.

The quasar 3C 273 is one of the target stations of the “Galaxy walk” at the Effelsberg Radio Observatory. Scaled 1:5x1022, the Galaxy Walk runs from Milky Way and Andromeda Galaxy (50 cm apart) to the edge of the Universe. 3C 273 forms station no. 7. With a distance of 2,4 billion light years it shows up only 450 meters away from the start (at a total length of 2.6 km for the Galaxy walk) .

Original Papers:

RadioAstron Observations of the Quasar 3C273: A Challenge to the Brightness Temperature Limit, Y. Y. Kovalev, N. S. Kardashev, K. I. Kellermann, A. P. Lobanov, M. D. Johnson, L. I. Gurvits, P. A. Voitsik, J. A. Zensus, J. M. Anderson, U. Bach, D. L. Jauncey, F. Ghigo, T. Ghosh, A. Kraus, Yu. A. Kovalev, M. M. Lisakov, L. Yu. Petrov, J. D. Romney, C. J. Salter, and K. V. Sokolovsky, The Astrophysical Journal Letters, Volume 820, Issue 1, article id. L9, 6 pp. (2016): http://iopscience.iop.org/article/10.3847/2041-8205/820/1/L9
(ArXiv astro-ph: http://arxiv.org/abs/1601.05806)

Extreme Brightness Temperatures and Refractive Substructure in 3C273 with RadioAstron, Johnson, Michael D.; Kovalev, Yuri Y.; Gwinn, Carl R.; Gurvits, Leonid I.; Narayan, Ramesh; Macquart, Jean-Pierre; Jauncey, David L.; Voitsik, Peter A.; Anderson, James M.; Sokolovsky, Kirill V.; Lisakov, Mikhail M., The Astrophysical Journal Letters, Volume 820, Issue 1, article id. L10, 6 pp. (2016): http://iopscience.iop.org/article/10.3847/2041-8205/820/1/L10
(ArXiv astro-ph: http://arxiv.org/abs/1601.05810)

Local Contact:

Dr. Andrei Lobanov,
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49 228 525-191
E-mail: alobanov@mpifr-bonn.mpg.de

Prof. Dr. Anton Zensus
Director and Head of Research Department „Radio Astronomy/VLBI“
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49 228 525-378
E-mail: azensus@mpifr-bonn.mpg.de

Dr. Norbert Junkes,
Press and Public Outreach
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49 228 525-399
E-mail: njunkes@mpifr-bonn.mpg.de

Weitere Informationen:

http://www.mpifr-bonn.mpg.de/pressreleases/2016/7

Norbert Junkes | Max-Planck-Institut für Radioastronomie

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>